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Abstract

Principal Base Parameter Analysis (PBPA) is a general and systematic proce-
dure for determining the dynamic parameters that directly contribute to the joint
torques of a manipulator, ranked in order of sensitivity. The feasibility of employing
PBPA as an aid in the design and tuning of adaptive model-based controllers for
industrial manipulators is rigorously investigated. This is acce.nplished by employ-
ing PBPA to determine the minimal size of the adaptive parameter vector and more
importantly, to develop a less heuristic procedure for controller funing. A simple,
step-by-step procedure is developed wherein the manipulator torque equations are
used in conjunction with PBPA to develop a functional adaptive model-based control
(AMBC) algorithm, then tune the algorithm for optimal performance. Experimen-
tal analysis contrasts this adaptive model-based controller, designed and tuned using
PBPA, to the completely heuristic procedure employed in previous Air Force Insti-
tute of Technology research. The incorporation of PBPA into the AMBC design
methodology reduces the time and expertise necessary to tune the controller for

satisfactory tracking performance.

xi




Principal Base Parameter Analysis: Implementation and Analysis in

an Adaptive Model-Based Robotic Controller

I. Problem Description

1.1 Background

The Air Force must be able to sustain operations in environments ranging from
the sub-zero temperatures of Thule, Greenland to the deserts of the Persian Gulf.
In addition, during war time, we may need to operate in a chemical, biological or
nuclear environment. In these situations, it may be undesirable or impossible to use
human operators. Robots may be the answer to this problem; however, if robots are
to be used in demanding Air Force applications, further research is necessary in the

area of advanced control algorithms.

One existing method of controlling robots, generically called classical control, is
to feed back position and velocity information into the control circuitry which causes
a modification of the control torque. Many classical control algorithms can supply
fairly accurate positioning, but only over specifically defined trajectories. A more
serious drawback of classical control algorithms is that they tend to either suffer
degraded tracking accuracy or become entirely unstable in the presence of external
disturbances or variable payloads. In an effort to make robots more general purpose,
as well as consistently accurate over varied conditions, different control algorithms
are being researched. One of the more promising classes of algorithms under in-
vestigation is Adaptive Model-Based Control (AMBC). Unlike classical methods of
control, which rely on well defined manipulator dynamics, AMBC uses an estimated
system mode] and modifies feedforward motor torques based on position and veloc-

ity errors. Furthermore, the estimated system model is refined with each successive
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pass over a given trajectory. In other words, this type of algorithm has the ability

to adapt to changing environments.

Previous studies at the Air Force Institute of Technology have demonstrated

that the tracking accuracy of a robot can show significant improvement when Adap-

tive Model-Based Control is used [16, 22]. Unfortunately, in order to achieve optimal

performance, these studies have had to employ heuristic, manpower intensive meth-
ods to fine tune the algorithm. The prime objective of this study has been to move

the tuning process away from this iterative, experimental nature.

The remainder of this chapter will be devoted to exactly what the problem is,
as well as how it was addressed. First, the problem will be explored more in depth,
both in terms of what tbe problem attributes are and why this subject rates further
study. Next, a general outline of the approach and methodology of this study will
be presented. This roadmap of the research will cover not only what was done and

what physical resources were used, but also what the final goal was.

1.2 Problem Statement and Objective

As already stated, previous studies at the Air Force Institute of Technology
(AFIT) have demonstrated that the tracking accuracy of a robot can show signif-
icant improvement over simple feedback controllers when Adaptive Model-Based
Control (AMBC) is used [16, 22]. For a typical AMBC algorithm, the total joint
torque applied is the feedback (i.e. Proportional-Derivative or PD) torque added to a
feedforward torque. This feedforward torque is typically determined real-time by the
adaptive algorithm. Specifically, the feedforward torque is determined on a joint-by-
joint basis and overall, is a product of a regressor matrix (Y) and a parameter vector
(@). The regressor matrix is comprised of all the non-linear terms of the manipulator
torque equations while the the parameter vector is made up of the known dynamic
terms and an estimate of the unknown dynamic terms. The estimated portion of

a is the product of the regressor transposed, the position and velocity errors and a
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diagonal adaptive gain matrix, I'"! all integrated over time. These terms, as well as.

their usage, will be discussed more in depth in the following chapters. The adaptive-

gain matrix, ['"!, is what was actually tuned with the aforementioned heuristic, man-
power intensive tuning process. One of the previous AFIT studies, done by Leahy
and Whalen, used a I'? of 16 diagonal elements, each ranging in value from 0-to 150
[16]. Assuming complete independance of the elements, total possible combinations
of values approaches infinity. For the Leahy and Whalen AMBC development, the
tuning was performed over the course of months, by individuals very well versed in
the dynamics of that particular manipulator. Leahy and Whalen have stated that
the tuning process is more an art form than a science and that changing the I'™?

values could result in either improved performance or disaster [16].

If it is desired to develop an AMBC algorithm for a general manipulator, the
question remains - is there a procedure to develop and tune said algorithm with-
out employing heuristics or extensive a priori knowledge of manipulator dynamics?
While it may be acceptable to spend months tuning a specific manipulator for a
specific task in a laboratory environment, such a time consuming process negates
many of the AMBC benefits in the context of day-to-day operation. Therefore, the
objective of this study was to develop a straightforward AMBC design procedure
that eliminates or reduces the amount of heuristics used when tuning the algorithm

for optimal performance.

1.3 Application of Principal Base Parameter Analysis

One way in which the tuning process could be simplified would be to establish a
relationship of each element of the parameter vector to the other elements. Assuming
that such a relationship could be found, the parameter vector could then be tuned
as a whole, using a single scaling factor, as opposed to the exhaustive combinational
analysis described in the previous section. A method of parameter analysis, recently

proposed by Ghodoussi and Nakamura, might be able to be used in this application.
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Their procedure, Principal Base Parameter Apzalysis reduces the parameter set of
a manipulator to an absolute minimum and ranks the resultant parameter vector
elements in order of sensitivity [5]. As a byproduct, PBPA yields an element-to-
element relationship in the resultant, reduced parameter vector. Ghodoussi and
Nakamura suggest that this element to element relationship may be of use in a

control application.

PBPA starts from the fact that each joint of a robot has ten associated primitive
dynamic parameters, which describe how it is moved and positioned [20]. These
primitive dynainic parameters are the link mass m, the independent elements of the
inertia tensor Iz, Iyy, L., Izy, Izz, I,; and the three position elements of the mass
centroid, 74, ry, 7, [5]. When moving the end effector into some arbitrary position,
some of these parameters are more important than others and some parameters will
be redundant. The base parameter set is defined as the minimal set of parameters
necessary to fully describe the dynamics of a ma.nipula,t;)r. Several methods have
been proposed to quantify how many parameters make up the base parameter set
[8, 4]; however, the method presented by Ghodoussi and Nakamura not only identifies
the minimal parameters specifically, but also ranks them in order of sensitivity. This

reduced, ranked parameter set is called the principal base parameter set.

Principal Base Parameter Analysis is a method to reduce the parameter set to
a minimum and coincidently, establishes an element to element relationship in the
reduced parameter vector [5]. This study has taken that assumption and used it to
develop an AMBC algorithm that can tuned with a single scaling factor versus the

previous heuristic tuning method.

1.4 Method of Attack

The first thrust of this study was to perform PBPA on the PUMA-560 con-
figured as a two degree of freedom platform (actuating only joints two and three).

While this portion of the study has little real-world application, it serves to illus-
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trate the concepts. The analysis was then expanded to a three degree of freédom case
(joints one, two and three actuated). The results obtained via PBPA for ihe three
are then incporporated into an adapiive model-based control algorithm. Finally, to
verify that this technique is not platform specific, the same proccdiire was applied

to a totally disparate manipulator, the Utah/MIT Dexterous Hand (UMDE).

1.4.1 Incorporation of PBPA into an AMBC algorithm

As discussed in the preceeding sections, PBPA yields a reduced parameter set,

ranked in order of sensitivity. An overview of how this reduced parameter set is

incorporated into an AMBC algorithm is as follows; specifics and description of

terms will follow in later chapters. First, the reduced parameter vector was used in
place of the the linear parameter vector, @, in an AMBC algorithm. Next, using the
original torque equations for the three degree of freedon: PUMA ar.d'this parameter
vector, a new regressor matrix was determined (such that the product of the regressor
and the parameter vector equaled the original torque equations). Finally, since the
parameter set consists only of physical values (i.e. liuk lengths, masses, gravity), the
best estimate of physical values were substituted into the reduced parameter vector.
This substitution yielded a vector of strictly numerical values. This set of numericdl
values was then used as the base I'"! values in the AMBC algorithm. From this point
on, all tuning of the algorithm was accomplished by multiplying the I'"1 matrix by

a single scaling factor.

1.4.2 Ezperimental Verification and Validation of Technique

Upon completion of the AMBC deaign, an exhaustive experimental analysis was
performed to provide validation and verification of the proceedure. The trajectory
set, as detailed by Leahy and Whalen [16], was performed to remain consistant
with previous AFIT research. Additionally, this previous AFIT study was used
as the benchmark with which to deteri.ine success or failure of the AMBC/PBPA

design and tuning technique. As was done by lLeahy and Whalen, this study also
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investigated such items as the effect of payload and parameter reduction on tracking

accuracy.

1.4.8 Cross Check of Technique on a Sece=i :aiform

In order to prove that thi, technique of as wi*’s » vuning is not just applicable
to the PUMA, PBPA and the associated AMBC uning was also planned for the
Utah/MIT Dexterous Hand. It was hoped that 1..- cross theck would prove that
the-technique developed here could be »plied aci s a range of robots. The study
done at AFIT by Rainey had already developed a control algurithm development
environment for the UMDH; however, since tiie time of that study, the host computer
and operating system had changed [22]. This change of host precipitated changes
in both the code and the communications interface to the robot. Consequently,
significant effort was required before PBPA and the associated algorithm tuning
could be accomplished on the UMDH. Due to delays in hardware developm.at, the
UMDH portion of this effort was not brought to fruition. PBPA was performed on
the UMDH and the results were ixorporated into an AMBC algorithm; however,
no experimental analysis was performed. Thercfore, no conclusions can be drawn as

to how well this design procedure works on the UMDH.

1.5 Materials and Fquipment

This study has been performed using equipment and software resident in the

Air Force Institute of Technology Signal Precessing Lab. Specifically:

e PUMA-560 Vertically Articulated Robot

o AFIT Robotic Control Algorithm Development and Evaluation (ARCADE) en-

vironment
e Sun Sparc2 Workstation

¢ Mathematica Software [28]




o Utah/MIT Dexterous iland

e SARCOS Hand Control Electronics [10]

o Ironics IV-3272 System Controller [¢!

e Ironics IV-3201 VME-bus Multiprocessing Engine

s Data Translation DT1401 Series A/D an<t D/A Converters
o VME Chasuis

¢ Sun Sparc2 Workstation

o CHIMERA II Real-time Programming Environment [2]

The PUMA version of ARCADE is hosted on a VAXstation III and has both
serial and parallel connections to the original PUMA computer bus. The PUMA’s
LSI-11/73 serves as a preprocessor. Communications restrictions, minimal processing
time and nominal clock rate resulted in a setvo rate of 4.5 msec (222 Hz) for the
experimental evaluations [16]. The UM ¢l version of ARCADE was developed and
hosted on and IBM PC/AT-386 and interfaced to the UMDH via an IV3201 real-time
processing engine by IRONICS [22]. The AMBC algorithm required a minimum of
3.0 msec (333 Hz) servo rate due to access and set-up times for the A/D and D/A
convertors. .As a first step to performing and testing the PBPA design procedure on
the UMDH, he previously developed software was re-hosted to a Sparc2 workstation
with the CHIMERA 1I programming environment. This re-hosting proceeded only
to the point where the AMBC software was compiled. The continuation of this effort

will be the subject of future study.

1.6 Contributions

AMBC type controllers have demonstrated greatly improved tracking accuracy
over simple feedback controllers alone. However, the manpower intensive tuning that

this class of algorithm requires to achieve optimal performance has made AMBC
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unattractive for use in other that a laboratory environment. This study develops
and verifys a éimple step-by-step procedure by which an AMBC algorithm can be
implemented and tuned for optimal tracking accuracy. Using this procedure, an
AMBC algorithm can be tuned for different-applications in a matter of hours, versus
the current time of months. Furthermore, th.. tuning can be done by a person with
little or no knowledge of the manipulator dynamics. The procedure developed herein

is the first step in moving AMBC out of the laboratory and into the field.

1.7 Summary

This chapter has described the prol tems associated with AMBC type algorithms
and how this study proposes to solve theri. Chapter 2 will explore current literature
for research trends in this area. Chapter & will describe the AMBC design procedure
and illustrate the same with an example. Experimental results are contained in
chapier 4 and the final chapter contains conclusions and recon; nendations for future

study.




II. Literature Review

2.1 Introduction

Recent research throughout the robotics community has extensively investigated
the topic of Adaptive Model-Based Control (AMBC). Two studies recently completed
at the Air Force Institute of Technology (AFIT) have implemented AMBC algorithms
on both the PUMA-560 vertically articulated robot [16] and the Utah/MIT Dexter-
ous Hand (UMDH) [22]. These studies both demonstrated that the tracking accuracy

of a robot can show significant improvement over simple feedback controllers when
an Adaptive Model-Based Control algorithm is used. A problem encountered in both

of the forementioned AFIT studies was the method in which the AMBC algorithm

was fine tuned for optimal performance. In both cases, heuristic, manpower inten-
sive methods were used to tune the algorithm as well as to reduce the parameter
set. The purpose of this literature review is to quantify the current state of research
in the areas of AMBC development, tuning of the AMBC algorithms for optimal

performance as well as parameter set reduction techniques.

2.2  Adaptive Model-Based Control

For a typical AMBC algorithm, the total joint torque applied is the feedback

(i.e. Proportional-Derivative or PD) torque added to a feedforward torque.

Ttptal = T+ Tsf (2.1)

This feedforward torque is typically determined real-time by the adaptive al-
gorithm. Specifically, the feedforward torque is a product of a regressor matrix (Y)

and a parameter vector (@). The feedforward torque equation may be of the form:

= Y(qd: (]d) qd)& (22)




where

Y (4qq,44, Ga) = regressor matriz where Y € RNjointszNparameters (2.3)
& = linear parameter vector where &g RNrerometerszl, (2.4).

qq4 =desired position (2.5)

¢i = desired velocity (2.6)

da = desired acceleration (2.7)

The regressor matrix is comprised of all the non-linear terms of the manipulator
torque equations while the the parameter vector is made up of the known dynamic
terms and an estimate of the unknown dynamic terms (e.g. gravity, inertias, masses,

link lengths). For a general 2 degree of freedom case the regressor would be [21]:

Y (q4, 94, G2) = (2.8)
Gar Gaz Gu F Gao  2€08quagar + C0SquzGar — 25tnquaqardas — $iNqa2qan’

0 0 G qa CoSqaadar -+ Singy2qan®

Gd1 G+ Gaz cosqy cosqar cos(qar +qaz) qu O sgnqgm O

0 qutgex O 0  cos(qar+ge) 0 g O  sgnqe
where sign(x) is defined as:

1 20
sgn(z) = . - . (2.9)
-1 z<

Equation 2-2 can also be written as




75 = Y1(94, §a» §a)& + Y2(qa> 4a» §a)in (2.10)

where @, conlains the known parameters and @ contains the estimated parameters.

This control algorithm adapts to new situations because the estimated portion
of the parameter vector is refined with each subsequent pass over a given trajectory.
Slotine and Li have proposed an approach to AMBC that uses this parameter re-
finement approach to also compensate for controller limitations [25]. Their equation

for the linear parameter vector is as follows [22]:

b= [T (4 4rs)da = 6) + Aga = )] (2:1)
where
¢ = G+ Alga ~ q) (2.12)

['-! is a diagonal matrix, whose values control the adaption of the individual
@ parameters; A is a ratio of the position to velocity feedback gains (A = K,/K,).
The Slotine and Li algorithm has been successfully implemented, however, it has
proven unreliable in the presence of velocity measurement noise [7]. Sadegh and
Horowitz have proposed another method of AMBC implementation which they call
”Desired Compensation Adaptation Law”[23]. Previous AFIT studies have validated
the performance potential of this approach to Direct Adaptive Control [16, 22]. This
implementation and study of AMBC algorithms has been the subject of on-going

research at the Air Force Institute of Technology (AFIT).

2.2.1 AFIT Research

Research at the Air Force Institute of Technology has included the evaluation

of Adaptive Model-Based Control (AMBC) algorithms on two very disparate ma-
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nipulators. The same equations have been implemented on both platforms and have
yielded roughly the same results - that is, both robots experienced increased tracking
accuracy after successive passes over a single trajectory. Both of the implementa-
tions that will be discussed were perfo.med using a digital computer. The- delay
inherent in a digital implenentation is handled:-by using the error information from
the previous sample time in the current cycle output torque calculations [15]. This

causes the equations to take the following form:

715(k) = Yalga(k), da(k), Ga(k)a(k) + Yalqu(E), qa(k), Ga(k)}an(k) (2-14)

Ty
a(k) = [ T qalk)y dalR), GlRD(Ek ~ 1) + Ae(k =] (2.19)

6k~ 1) = dalk — 1) — [a(k — 1) = g(& = 2)}/T, (2.16)
ol — 1) = qalk— 1) — gk 1) (2.17)
756 = Kpé(k — 1) + Kpe(k —1) (2.18)

where T is the sample period and the integration was accomplished using the Adams-
Bashforth Two-Step method. The two implementations are discussed more in depth

in the following subsections.

2.2.1.1 Implementation on a Vertically Articulated Robot

Leahy and Whalen have implemented an AMBC algorithm, of the type de-
scribed above and gained insights into issues such as algorithm tuning, parameter
initialization/convergence and asynchronous adaptation [16]. The manipulator used
was a Unimate PUMA-560 vertically articulated robot. As described above, the
algorithm they implemented requires only desired values for position and velocity
to control movement of the robot. The control algorithm was then tested over a
variety of trajectories, using both known and unknown payloads. This rigorous test
scenario was designed to test the algorithm as completely as possible, over the full

range of manipulator dynamics. The Leahy and Whalen findings indicate that the
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AMBC control algorithm can adapt to a given trajectory after a-minimal number-of
passes. In fact, peak trajectory tracking errors were reduced by a significant amount
over classical control methods [16]. Figure 1.1 is simply shown to demonstrate the
relative merits of a plain PD feedback controller versus an adaptive controller. The
algorithm designated AMBC/H is the heuristically tuaed algorithm developed by
Leahy and Whalen. The designation AMBC/PBPA is the algorithm version that
will be developed and discussed in later chapters. [t can be seen that both versions
of the adaptive feedforward controller clearly provide better tracking accuracy than
the PD controller alone. Furthermore, they illustrate that both the AMBC/H and
the AMBC/PBPA controllers provide essentially the same tracking accuracy.

One interesting point of this implementation was the method Leahy and Whalen
used to determine the initial values of the linear parameter vector (&). For this
implementation, & was partially composed of an estimate of system parameters.
They note that giving different initial values to different parameters, can result in
convergence tc a minimal trajectory tracking error in different numbers of passes
over that particular trajectory. Leahy and Whalen note that using the best estimate

of the known physical values provides quicker tracking error convergence than does

starting @ at zero.

Of more consequence to this study are Leahy and Whalen’s findings concerning
aigorithm tuning. Through a heuristic, manpower intensive process they were able to
fine tune the algorithm to optimal performance. This 'optimal’ performance provided
peak tracking error of typically less than 5 thousandths of a radian over the full test
trajectory suite. The persons performing this fine tuning procedure were well versed
in the dynamics of this manipulator - even so, the tuning process was performed
gradually over the course of months. The method Leahy and Whalen used to. tune
the algorithm was largely an iterative approach, where individual elements of I'"
were incrementally changed. They state that due to the strong interdependence

of the parameters, estimating them currently can be as much an art as a science.
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Furthermore, Leahy and Whalen found that changing the I'"? valnes could result in-
either improved performance or disaster [16]. Figure 2.2 is supplied as-an illustration
of the effect of setting I'"! elements to a common value. While it is possible to-track
the given trajectory, peak tracking error increased dramatically-over the case where-

a ’customized’ set of T'™! values were used.

2.2.1.2 Implementation on a Dexterous Manipulator

A Master’s Thesis, recently completed by Rainey, concerned the implementa-
tion and evaluation of an AMBC algorithm on a dexterous manipulator, configured
for two degrees-of-freedom [22]. The robot used for this study was the Utah/MIT
Dexterous Hand (UMDH). This robot is a tendon driven, multiple degree-of-freedom
hand, developed primarily as a research tool for issues related to machine based arti-
ficial dexterity [11]. The UMDH is a prime candidate for a study of adaptive control
algorithms because its internal dynamics are not as well known as the PUMA’s.
The implication of this is that any improvement in tracking accuracy will have been
caused by the AMBC algorithm. Rainey used this robot to develop and test an
AMBC algorithm in terms of suitability for human finger emulation [22]. As with
the vertically articulated robot, AMBC provided a significant increase in tracking
accuracy, as compared to classical control methods [22]. As did Leahy and Whalen,

Rainey also used heuristic methods to fine tune his AMBC algorithm (16, 22].

2.8 Parameter Reduction

Once the parameters necessary for control of the robot have been determined,
whether heuristically or mathematically, an appropriate regressor matrix can be de-
termined such that 7 = Ya. As stated earlier, in general, an arbitrary rigid body
can be described with 10 dynamic parameters. When two rigid bodies are connected
together, not all 20 parameters are needed to describe the entire system [1, 12, 8]. A

number of papers have been published which deal with the issue of minimum param-
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eter identification and parameter set reduction. These papers -cover the spectrum

from a basic method to simply quantify the number of nécessary parameters:[8] to

another method to determine which parameters are needed [4], to a final method
which determines not only which parameters are necessaty, but-also ranks them in.

order of sensitivity [5]. These three cases will be covered more extensively in the-

following sections.

2.3.1 Base Parameters of Manipulator Dynamic Models As stated above,
while each link of a manipulator has ten associated parameters, when a robotic
system of multiple links is considered, some parameters will be fedundant. This is
due to the fact that the relative motion of two adjacent links is restricted to one
degree of freedom and the first link of the manipulator is is typically connected to-a
fixed base by a joint [8]. A parameter set consisting strictly of non-redundant terms
is commonly called the base parameter set for that particular manipulator. Deter-
mination of this base parameter set is useful in reducing the on-line -calculations
needed for accurate control of the robot. Mayeda et.al. have proposed a method for
determining the minimum number of parameters for a system. The equation they

arrived at is (8]:

p=TN -4, (2.19)

or, if the first joint axis is parallel to the gravity vector:
p=TN —48; -2 (2.20)

where p is the total number of non-redundant parameters, N is the number of links
in the manipulator and f; is the number of links connected by joints whose axes
are always parallel to the first joint axis. This equation is useful for determining

the quantity of parameters in the base f .rameter set; however, it will not determine
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which parameters are important. This forula would be useful o a designer in
verifying that he has reduced the parameter set to the correct size, but does not
verify the accuracy of the reduction (e.g. a non-redundant parameter could possibly

have been eliminated in favor of a redundant parameter).

2.3.2 Direct Calculation of the Minimum Set of Inertial Parameters

Gautier and Khalil have also presented a method for determining the minimal
set of inertial parameters for serial robots [4]. Simply put, the procedure is to elimi-
nate those parameters which have no effect and to regroup the remaining parameters
as much as possible. To this end, Gautier and Khalil give a set of rules which per-
mit the elimination of redundant parameters and qualifications for regrouping the
remaining parameters. This same method is implemented by Gautier, using a nu-
merical approach, in an earlier paper [3]. Either the Gautier numerical approach
or the Gautier/Khalil rule based approach both show promise of being a straight-
forward procedure of identifying the base parameter set, but unfortunately do not

provide any sort of element-to-element relationship in the parameter vector.

2.3.8 Principal Based Parameter Analysis

Even though the methods described above allow a AMBC algorithm designer to
find the base parameter set, those methods do not address the relationship between
the individual elements of the base parameter set. Ghodoussi and Nakamura have
developed a mathematical method for determining the base parameter set, ranked
in order of sensitivity, which they call Principal Based Parameter Analysis (PBPA).
They present a systematic and general method to find those dynamic parameters that
directly contribute to joint torques - that is, the base parameter set [5]. The rcsult
of this systematic analysis is a set of parameters numbered in order of sensitivity.
Ghodoussi and Nakamura’s theoretical development of PBPA is presented in the

following sections.
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2.8.8.1 PBPA Theoretical Development Each joint of a robot has ten
associated primitive dynamic parameters, which describe how it is moved and po.i-
tioned [20]. These parameters are the link mass m, the independent-elements of the
inertia tensor Ipg, Iy, L.z, Izy, Izz, I, and the three position elements of the mass
centroid, 1z, ry, 72 [5]. When moving the end effector into some arbitrary position,
some of these parameters are more important than others and some parameters will
be redundant. Through exhaustive testing, or with some insight into a particular
manipulator, a reduced parameter set can be found. This reduced parameter set al-
lows for the same total joint torque to be found, with less computation. The method
presented by Ghodoussi and Nakamura not only identifies the minimal parameters
specifically, but may also answer the more important question of how to fine tune
an AMBC algorithm. The equations developed by Ghodoussi and Nakamura are

presented in the following section.

2.8.] Development of PBPA Equations The torque equations for a manipu-

lator can be represented in the form [6]:

T= N((], q, (I)p (2'21)

where p is the complete parameter vector and N is defined as:
n{ (¢4, 4)
N(q,¢,9) = : ,  where n; € RNeorameters, (2.22)
(¢4 )

The n subscript denotes total number of joints. n; can be further defined as

ni(qa da (]) = no((I: q.7 q)‘Kt (2'23)
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Where ng is defined as a vector containingzall the non-linear termssthat appear

in N and K; is a constant matrix involving the kinematic parameters for link 7.

N can now be represented as:

n} KT

nf KT
N .

(2.24)
nZ'KZ;

Next, a variation in torque due to a variation in the parameter set can be

represented as:

67 = N(g, 6, )6p (2.25)

and

QMM=ﬁ“ﬂWW@“J%MhJ%M“d@ (2.26)

Combining the above equations, yields
R ... 0O K¥

J(6p)=6pT(K1 Km) ot | ép (2.27)
0 ... BRJ\ KZ

where

= T n/
R_meﬂ (2.28)
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R is a symmetric, positive semidefinite matrix and is: called the Covariance
Matriz of Nonlinearity. A symmetric, positive semi- definite matrix can- be shown

in the form R = RR, where R2 = R. Substituting back into equation 2.27:

J(6p) = §p7STS6p (2.29)
where
RV2KT
S=1 Rl/?KzT (2.30)
Rl/;Ki )

Equation 2.30 implies that the nonlinear effect of ¢, ¢ and ¢ on the contribution
of the dynamic parameters to joint torques is taken into account via the covariance

matrix of nonlinearity.

The Singular Value Decomposition of ! is:

SVD(S) = U3, VY (2.31)

and the Principal Base Parameters (denoted p*) are simply found by:

P =Vip= (P Py (2.52)

L (2.33)

The end result of PBPA is this reduced linear parameter vector p*, which has
an inherent relationship between its clements. This relationship will be cxploited in

the following chapter to develop a simple AMBC tuning procedure.
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2.4 Conclusion

Adaptive Control will play 2 large part in the future of robotics. AMBC provides
a tremendous improvement in tracking accuracy over plain PD controllers; however,
the associated, heuristic tuning process has kept AMBC {from transitioning from
the laboratory environment to operational applications. Before AMBC can become
widely used in everyday operations, some straightforward procedure for algorithm
tuning must be found. Furthermore, this tuning procedure should not require a
huge investment of manpower or extensive knowledge of the system dynamics. To
date, no such procedure-exists, even ‘hough at least-one possible approach has been
suggested. This study will explore the possibility of developing an AMBC algorithm
and an associated procedure that details how to quickly and-simply tune for optimal

performance.




III. Adaptive Model-Based Control Development using Principal

Base Parameter Analysis

3.1 OQverview

Previous studies at the Air Force Institute of Technology have shown that Adap-,
tive Model-Based Control (AMBC) algorithms can provide excellent tracking accu-
racy as compared to classical control methods [16, 22]. One of the reasons AMBC
algorithms are not more widely used in operational systems is the method by which
they must be fine tuned for optimal performance: This tuning process is currently
heuristic and manpower intensive in nature. Before AMBC algorithms can gain
wider acceptance outside of laboratory environments, the tuning process must ma-

ture considerably.

As discussed in the previous chapter; a method of parameter analysis recently
proposed by Ghodoussi and Nakamura may provide a basis for a more acceptable
tuning process. Their analysis method, Principal Base Parameter Analysis (PBPA),
might be used in a process by which an AMBC algorithm can be tuned in minutes

vice the current tuning time of hours or days.

This chapter will use PBPA to develop an AMBC algorithm which can be tuned
with a single scaling factor. This development process will first be illustrated with
a planar, two degree of freedom example. The procedure will then be applied to
the PUMA-560, configured as a three degree of freedom platform (joints one, two
and three actuated). Finally, the possibility of extending this analysis to a second

manipulator, the Utah/MIT Dexterous Hand will be discussed.

3.2 AMBC Design with PBPA

Numerous forms of Adaptive Model-Based Control have been proposed and

experimentally evaluated. The direct adaptive forms share the following general
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format:

T= Y(Q)‘Lé)&'*"rfb (3‘1)

T,
~ -1 T )
i= [ T (g4, (32

where 7, represents a linear feedback law and s is a vector of weighted tracking
error. Two universal design considerations are the size and physical representa-
tion of the regressor (Y) and the method of tuning the adaptive gain matrix (I'"1).
While multiple combinations of Y and & can produce identical joint torques, different
permutations of Y and @ result in variations in algorithm stability, computational
complexity, and tracking performance [16]. The dependence of algorithm stability,
parameter convergence, and tracking performance on the strength of the I'™! ele-
ments is also well known. As discussed in section 2.2.1.1, the current method of
determining the strength of the individual I'"! elements is by trial and error. This
heuristic tuning process is time consuming and provides no indication of the ’best’
set of I'"! values. AMBC design using PBPA may provide a non-heuristic basis for
tuning the I'"? elements. To illustrate this proposed design procedure, the linear
parameter vector (&), the regressor matrix and the adaptive gain matrix values are
first determined for a 2 DOT ideal planar arm representation, based on links 2 and
3 of a PUMA-’ 60. The extension of that procedure to a real 3 DOT' PUMA configu-
ration is then discussed. Finally, the foundation for extension of this process to the

Utah/MIT Dexterous Hand is laid.

3.2.1 Ideal 2 DOF PUMA

Using standard Denavit-Hartenberg convention, the link parameter notation
used by Spong and Vidyasagar, and for the moment neglecting drive system dynam-

ics, the torque equations for joints 2 and 3 are written as [13, 26]:

Ty = 62(J2 + J3 -+ lzzmg -+ l§m3 + lzsm;; + 23l gmasin (]3)
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+ §3(Js + 'lzama + lpliamssin q3)
+ 2243laligma cos g3

+ G2l lamscos g

— glgmsg cos 2

— glamgcosqo

— gleamssin(gz +-¢3)

73 = G§o(Js+ Byma + Llgmssings)
+ G3(J5 + IZ3m3)
+ G213l ama cos g3
— glsms sin(gz + ¢3)

For this simple example, the nonlinear terms are grouped into the ng. vector-by

inspection, yielding:

nl =[G Gsings G Gasings cosgsdads
cosg3gs cosqy sin(qa + gs) cosqzég] (3.3)

with the corresponding vector of all primitive parameters giveu by:

I’T = [ Jo Js mzlcz2 msl% m31b32

malesly malesg malag msleag ] (3:4)

and the constant matricies K; defined as:

1111100 0 0]
000002 0 0 0
610010 0 0 0
00001C 0 0 0

K;={000002 0 0 0 (3.5)
000001 0 0 0
000000 -1 —1 0
000002 0 0 -1
(000000 0 0 O
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01001000 07
000:00100 0
010010200 0
“0-0 000000 0
K;=|00000000 O (3.6)
000O06O0O0OOCO O
00000O0OCO O
0000O0O0TO0O0 =1
00000100 0 |

The Covariance Matrix of Nonlinearity is calculated by Equations 2.28, 3.3, and
an appropriate set of integration limits-on |g|, |q];-and |G]. The values chosen for the
integration limits are configuration specific. For this particular configuration, the
values |gi| < 7, |¢:] <2, |G:] £ 5 were chosen. These particular values define the
experimentally determined maximums for a PUMA robot [18]. Symmetrical limits,
while not truly indicative of most industrial robots, significantly reduce the overall
complexity of the PBPA. If non-symmetrical limits are used, the R matrix is less-
sparse, therefore complicating the results. Simplification via symmetrical intcgration
limits becomes pivotal with higher degree of freedom cases (3 DOF and more). In
fact, when the 3 DOF case was first investigated, real-world values were used for the
integration [13]. The overall integration for non-symmetrical limits took almost 10

times longer than when symmetrical limits were used.
Forming S (Equation 2.30) and performing a Singular Value Decomposition

yields VT and therefore, the Principal Base Parameter Set, p*. (Equations 2.31 and

2.32).

[ —02182: ]2 -+ 1321712 + I%m;;) - 06547(.]3 + 1337713) ]
—0.5345(Jy + Zymy + Zmg) + 0.2673(J5 + Zm3)

p" = 0.02486(glcgm2 + glgma) - 0.9994[21,:3m3
—07067(g1¢2m2 + glgm3) - 003516[21‘-3"13
~glams

3.2.1.1 Formulalion of the Adaplation Conlrol Law
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As discussed in section 3.2, the general form of a direct adaptive controller is
T = Y(q,4,9)é& + 7sp. Feedforward torque is simply the product of the regressor
matrix Y and a linear parameter vector a. Since p* has been defined as the set of
non-redundant parameters, for this design procedure, set ¢ = p*. For this design
example, the next piece of the puzzle is to find Y. It is useful to explicitly point out
that Y is not unique. The exact composition of V' depends on the system torque

equations and the final make-up of the linear parameter vector.

The size of p* implies that the regressor will be a 2 X 5 matrix (e.g. 2 joints
X 5 p* elements). The next step is to determine the actual regressor values. The
terms in the regressor matrix can be determined using knewledge of the system
torque equations and p*, to solve a series of simultaneous equations. A symbolic
mathematic manipulator, such as "Mathematica” [28] minimizes the drudgery. For
For the 2 DOF case, the system of equations was 9 equations with 9 unknowus. The
value nine is simply the number of discrete, non-linear terms appearing in n?. The
size of nL for the 3 DOT case implies a system of equations of 54 equations with 54
unknowns. This indicates that larger DOF manipulators will quickly become quite
complex and their regressor increasingly more difficult to find - perhaps impossible
to find without computer aid. It should be noted that finding the regressor matrix
via simultaneous equations is straightforward, but time consuming. The result of

the simultaneous equations for the 2 DOF equation is shown as Equation 3.7.

~0.6547§2 — 1.3093(d2 + §3)
—1.6038§2 + 0.5345(g + §3)
Y7T(q,q4,q) = | —0.0498 cos g3 ~ 0.99938(2d243 cos g3 + 5 cos g3 + 2§ sin g3 + {3 sin ¢3)
l 1.4133 cos ¢ + 0.03516(—242d3 cos g3 — 3 cos g3 — 2§ #in g3 — §asin g3)
sin(gz + ¢3)

~1.3093(d + )
0.5345(g -+ §a)
~0.99938(¢3 cos g3 -+ Gasings) | (3.7)
—0.03516(¢Z cos g3 + G2 sin g3)
sin(gz + ¢3)
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3.2.1.2 Tuning the AMBC Algorithm

I'! is a diagonal adaptive gain matrix whose values control the rate of adap-
tion of the individual @ parameters. As discussed in section 2.3.3.1, Principal Base
Parameter Analysis not only eliminates all redundant parameters yielding the base
parameter set, but also ranks the base parameter set elements in order of sensitiv-
ity. This relative ordering of the individual parameter set elements is what provides
the basis for non-heuristic tuning of the AMBC algorithm. The elements of @ (post
PBPA) have an inherent relationship to one another, and there is an element to
element correspondence between & and I'"!. Therefore, '™ should possess the same

type of relationship among it’s elements.

The physical values for the inertial parametars (e.g. link lengths, masses, etc.)
are now substituted into @ The resultant is a numerical vector and is used as
the diagonal base value for I'~'. Assuming that the magnitudes of the individual
parameters are a valid indication of their relative impact on controller torque, and
therefore tracking performance, tuning is reduced to varying the entire I'"! matrix by
a scaling factor, as opposed to tuning individual elements. Determining the validity
of that assumption is the objective of the experimental analysis. However, before this

analysis can take place, p* and the associated regressor for the three DOF PUMA

must be determined.

3.2.2 The Three DOF Case

In order to conduct a realistic evaluation of incorporating PBPA into AMBC
design, the two DOF procedure was extended to the three positioning links of the
PUMA. The lengths of the equations make their inclusion at this point in the paper
unrealistic , however, they can be found in the appendices. The starting point was to
determine the primitive parameter vector that represented all the classical dynamics
of these three links of the manipulator. As for the two DOF case, the first step in

this design procedure was to take the torque equations and re-arrange them into the
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form shown in Equation 2.21. This re-arrangement resultedin a primitive parameter
vector (n}) of all of the dynamic parameters, but excluding friction. Following
the same steps as detailed for the two DOF case, PBPA produced an 18 element
principal base parameter vector (p*). A realistic dynamical representation of the
PUMA must also incorporate drive system information. Previous studies indicate
that inclusion of coulombic and viscous friction torques in each joint is sufficient
[18, 24]. Since the linear coefficients of those forces are independent of inertial
dynamics, they can simply be appended onto the nominal p* vector. Including
them in the primitive parameter vector would only have complicated the PBPA and
would have contributed no additional information. Initial attempts at PBPA for
the three DOF case included the friction terms in the primitive parameter vector
and they remained intact (e.g. they were not reduced further) by PBPA. All of this
considered, the six friction parameters increases the size of the complete principal

base parameter vector to 24 elements.

Once the complete p* vector was found, physical values for the variables (e.g.
masses, link lengths, experimentally determined friction coefficients, etc.) were sub-
stituted and the individual p* elements were re-arranged in decreasing order of their
absolute magnitude. p* was next normalized to the magnitude of its smallest element.
The final product was a linear parameter vector, consisting of 24 clements, made up
of the minimal required inertial parameters, as well as the viscous and coulombic
friction parameters, arranged in decreasing order of relative absolute magnitude and
normalized to the smallest relative value. This normalized p*, rounded to the near-
est whole number, is 8530, 2896, 2254, 2043, 1782, 1348, 1171, 1048, 1048, 448, 396,
386, 329, 204, 185, 137, 99, T1, 64, 35, 9, 4, 3, 1. In the actual implementation,
greater precision was used - the rounding done here was applied simply to illustrate

the relative values.

Finally, as described in the previous section, the regressor was found using the

initial torque equations and a system of simultaneous equations, solved via Mathe-
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matica on a Sparc2 workstation. Using a comparable machine and given the torque
equations and integration limits, a user experienced in both PBPA and Mathemat-
ica could arrive at a final p*, for a typical three DOF manipulator, in under one
day. This process is somewhat time-consuming, however, the inconvenience should

be traded off against the relative resultant ease of tuning after implementation.

3.8 The Utah/MIT Dezterous Hand Implementation

Using the same torque equations as Rainey, and following the design steps
laid out above, PBPA was done on the UMDH, configured as a two degree of free-
dom manipulator. Furthermore, the results of the PBPA were incorporated into
an AMBC algorithm; however, work was halted just short of implementation. As
discussed in chapter 2, there was significant effort to be expended on making the
UMDH operational, before the AMBC/PBPA experimental analysis could be done.
Unfortunately, this extra effort caused this part of the research to be aborted. At
time of publication, the host computer for the ARCADE software was only able to
achieve rudimentary communication with the UMDH. This interface was not enough
to implement and evaluate any sort of advanced control algorithms. Consequently,

no analysis of results for the UMDH will be discussed in chapter 4.

3.4 Summary

A procedure for the design of an non-heuristically tuneable adaptive controlleg
was developed by way of a two degree of freedom planar example. This two DOF
example, based on joints two and three of the PUMA 560 used the original torque
equations to perform Principal Base Parameter Analysis. The resultant principal
base parameter vector was then used to find an AMBC regressor matrix and corre-
sponding base I'"! values. Finally, this two DOF example was extended to the three
positioning links of the PUMA 560. Some of the pitfalls of the approach (i.e. se-

lection of integration limits, exponential growth of the simultaneous equation) were
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also discussed. The next logical step in this study is to-actually implement the 3
DOF AMBC/PBPA controller and contrast its performance against the performance

achieved with the heuristically reduced and tuned controller.




IV. PBPA Test and Analysis

4.1 Overview

The true test of the potential of an advanced control algorithm can only be
determined via experimental test and evaluation. To that end, the AMBC/PBPA al-
gorithm has been exhaustively tested and the results analyzed. The goal of these ex-
perimental evaluations was to validate-concepts, not to produce the optimal PUMA-
specific algorithm. Therefore all test runs produced using the AMBC/PBPA algo-
rithm had the same, single I'"! scaling factor. No attempt was made to fine-tune’
the AMBC/PBPA algorithm further. This restraint from fine tuning is important
because these results are to be compared against the AMBC/H algorithm which
was fine tuned over the course of months. The initial thrust of this chapter is to
describe the test environment and algorithm initialization issues, followed by a de-
scription of the test trajectories. The test suite follows that made in past AFIT
studies [14, 15, 16, 17, 18]. The AMBC/PBPA algorithm will be compared and con-
trasted against the AMBC/H algorithm in areas such as simple trajectory tracking,
robustness to payload variation, parameter convergence, pattern learning and sensi-
tivity to reduction of parameters. The two algorithms will be compared numerically,
as well as graphically. In this chapter, only representative plots will be shown - the

comprehensive collection of plots can be found in the appendices.

4.2 Test Environment

Principal Base Parameter Analysis is an avenue that can be used by an AMBC
designer to come up with an easily tuned control algorithm. However, does this
algorithm provide adequate tracking accuracy? This experimental evaluation will
compare the AMBC/PBPA algorithm against the AMBC/H algorithm, as used in
previous AFIT studies. The ultimate goal is to determine if PBPA provides a sound

basis for tuning the adaptation gain matrix of an AMBC algorithm with a single
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scaling factor. Furthermore, it is to show the ability to reduce the required set of pa-
rameters needed by an adaptive algorithm, without introducing significant additional

tracking errors.

The algorithm chosen to accomplish this is the Sadegh and Horowitz version of
an adaptive controller, which has been used in previous AFIT studies [23, 22, 16].
This Desired Compensation Adaptation Law (DCAL) was discussed in depth in
section 2.2.1. The PD gains were set to stiff values employed in previous model

based studies [18, 16] and reiterated in table 4.1.

Table 4.1. Stiff PD Feedback Gains

Joint 1 | Joint 2 | Joint 3
K, | 640.0 | 1330.0 | 360.0
K, 72.0 130.0 25.0

The same form of the DCAL was used for both cases; that is, for the heuris-
tically tuned case (ala Leahy and Whalen) and for the non-heuristically tuned case
(thic study). While the same same form is used (e.g. 755 = Y'&), is should be noted
that both Y and & will be composed of entirely different values. As described in sec-
tion 2.2.1.1 these two cases will be referred to as ’"AMBC/H’ and ’AMBC/PBPA’,
respectively (AMBC/H meaning AMBC with heuristic tuning). Finally, these ex-
perimental evaluations were conducted at a servo rate of 222 Hertz, using the AFIT
Robotic Control Algorithm Development and Evaluation (ARCADE) environment
[18].

4.2.1 Description of Trajectories The test trajectories chosen correspond to
those used by Leahy and Whalen for their analysis of a Direct Adaptive Controller
for Industrial Manipulators [16]. Their results will be used as a benchmark for
comparison. The choser trajectories, listed in Table 4.2, were first performed under

zero payload conditions. Next, to prove adaptability under loaded conditions, two of
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the trajectories were also run with a 2 Kg brass disk attached to the link six mounting
flange [16]). Motor saturation constraints limited payload testing to Trajectories 1

and 3 only.

Table 4.2. Test Trajectories (degrees)[16]

Number Start Finish Time (sec)
1 | -50,-135,135 | 45,-90,30 15
2 | -50,-205,90 | 45,-160,-15 | 2.0
3 | 0,180,180 [ 95,135,75 2.0
1 0,-90,90 | -95,-135,-15 2.0
5 0,-45,135 | -95,-90,20 20
6 0,-90,90. | 95,135,195 15

Trajectories 1, 2, and 3 each have an angular movement of (95°,45°, —105°).
Trajectory 1 and Trajectory 6 both travel the trajectory in 1.5 seconds while Tra-
jectories 2 - 5 are performed. in 2.0 seconds. The desired trajectory velocity and
acceleration components will be identical for Trajectories 2 and 3. Trajectories 4
and 5 apply identically‘generated trajectory commands to different initial conditions.
When compared to Tre;jectories 2 and 3, the initial positions differ and the move-
ment of Joints 1 and 2 is opposite. (Trajectories 4 and 5 move (—95°, —45°, —105°)).
The respective desired position and acceleration terms should also differ in sign from
those of Trajectories 2 and 3. These two test trajectories permit testing to consider

the effects of different starting positions and direction of motion.

The movement of Trajectory 6 is similar to Trajectory 1. Joint 3 moves in the
opposite direction while Joint 1 and 2 movement is the same. Desired velocity and
acceleration terms for Joint 3 should have opposite signs. This trajectory can be
used to determine the effects of different starting positions, direction of motion, and
trajectory speed [24]. This selection of trajectories will allow evaluation of the effects

of different starting positions and trajectory speeds.
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4.2.2 Initialization of &

To be consistent with Leahy and Whalen'’s testing, only 16 estimated parameters
were used by the DCAL. While Leahy and Whalen chose 16 parameters based on pay-
load sensitivity analysis, the 16 parameters chosen for the AMBC/PBPA algorithm
were simply the 16 most sensitive parameters (as indicated by the Principal Base
Parameter Analysis). The remaining, non-estimated parameters were given their
nominal physical values. Leahy and Whalen have determined that 16 parameters ri-
valed the tracking performance of their robust feedback algorithm, while expanding
the @ vector beyond 16 elements produced a negligible effect on tracking accuracy
[16]. This inference is consistant with AMBC/PBPA - refering to the values given
for the normalized p* (section 3.2.2), it can be seen that p*(17) is approximately
two orders of magnitude less than p*(1). Consequently, the inclustion of parameters
17-24 in the adaptation process would provide a ery small additional feedforward

torque in comparison to parameters 1-16.

One other point should be explicitly made concerning the non-estimated pa-
rameters. To reiterate, the total size of the AMBC/H parameter vector is 28 el-
ements; total size of the AMBC/PBPA parameter vector is 24 elements (refer to
section 3.2.2). This implies that there are 12 and 8 non-estimated parameters for
the AMBC/H and the AMBC/PBPA algortihms, respectively. The non-estimated
elements of each parameter vector are given their nominal physical values and remain
constant throughout the entire trajectory (e.g. do not adapt). These non-estimated

parameters contribute to the feedforward torque as shown in Equation 2-10.

4.2.2.1 AMBC/H Initialization of &

For all cases where the AMBC/H algorithm was utilized, & was initialized to its
approximate physical values, as given by Tarn and Bejczy [27]. This initialization of
a causes the trajectory error to be significantly lower in the first run, as opposed to

initjally setting @ to zero [16]. These physical values are used simply as an approxi-
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mation to what the values should be; the adaptive controller will fine-tune them to

more appropriate values during the course of the adaption.

4.2.2.2 AMBC/PBPA Initialization of &

For the cases where the AMBC/PBPA algorithm was used, & was initialized
to a pre-determined set of values. This pre-determined sct of values was found by
running Trajectory 2 until steady state error occurred. This particular set of values
was chosen because Trajectory 2 was arbitrarily decided to be the most *benign’ of
all the trajectories. C.sequently, initial runs on this trajectory were less likely to
become unstable while the algorithm was tuned (via the adaptive gain matrix scale
factor). The resultant @ values were then used as the initial & values on all other
trajectories (Table 4.3). At first, the AMBC/PBPA & initialization was attempted
in the same manner as the AMBC/H ¢ initialization - that is, the values were set
to their approximate physical values. However, using this approach, the PUMA was
unable to successfully track a subset of the test trajectories. This seems to indicate

that one (or more) of the approximations used is (are) grossly out of line.

4.2.3 T Values

A prime advantage of PBPA can now be shown. Referring to Equation 2.15,
I is a diagonal matrix, used to tune the relative contribution of each individual
element of the linear parameter vector to the overall feedforward torque. Leahy
and Whalen note that with their previous method of reducing the parameter vec-
tor through experimentation, the I'"! matrix must also be tuned heuristically [16].
As discussed in section 2.2.1.1, while it is possible with the AMBC/H algorithm
to simply set each element of I'"! to a common value, if the value chosen is too
large, tracking accuracy suffers, if the value chosen is too small, adaptation time
increases. The Leahy/Whalen method was to iteratively tune each element, seeking
best overall performance. Leahy and Whalen were able to achieve admirable track-

ing accuracy, but at the expense of tuning the algorithm over the course of months.
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With AMBC/PBPA, the adaptive gain matrix (section 3.2.2) can be tuned as-a
whole because each element is relative to the others. To change the rate of adapta-
tion of the system, the entire AMBC/PBPA I'"! would simply need to be multiplied
by a different scaling factor; however, the AMBC/H I'"! would need to be manually
re-tuned, element by element. For all testing, the '™ values used for the AMBC/H
algorithm are (120,120,120,0,90,90,90,15,150,5,80,30,15,80,80,80) [16]. The I'"? val-
ues for the AMBC/PBPA version of the algorithm are the normalized values of the
p* vector (section 3.2.2), scaled by the multiple 0.020. The value 0.020 was chosen
because it was the maximum scaling factor with which tracking was possible over all
six trajectories. Incidently, approximately 1 hour was consumed settling on this par-
ticular scale factor. The time spent tuning the AMBC/PBPA algorithm compares
favorably to the months spent tuning the AMBC/H algorithm. If it were desired
to increase the amount of feedforward torque to the system (therefore decreasing
the time to steady state error), it would simply be a matter of increasing the single
scaling factor; however, it should be noted that increasing the scale factor may cause

instability on one or more of the test trajectories.

4.8 Analysis of Data

4.3.1 Evaluation Over Standard Trajectories This series of figures (Figures
4.1-4.5) demonstrates the performance of both algorithms showing selected trajec-
tories and joints, no payload. Each figure shows the first and fifth pass of each
version of the adaptive controller over the noted trajectory. Most of the figures have
a common thread: the AMBC/PBPA algorithm starts with a slightly larger track-
ing error and still has not caught the AMBC/H algorithm by the fifth pass. In fact,
this trend continues; that is, the AMBC/H algorithm consistently shows a tracking
error somewhat less than the AMBC/PBPA algorithm (Figure 4.6); furthermore,
the performance of the two algorithms never converge. However, it should be noted

that the difference in tracking error is normally in the area of a few thousandths of
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a radians. Regardless, the AMBC/PBPA algorithm essentially reaches-steady state-

error after approximately five passes (as does the AMBC/H algorithm):

4.3.2  Adaption of &

Table 4.3 shows the final values of the AMBC/PBPA é for selected trajectories.
They are seen to be quite different from their best estimate physical values; however,
the steady -state values are in the same realm over completely different trajectories.
This is the one area where heuristics have not been completely eliminated. As
described in section 4.2.2.2, the initial & used for all trajectories was the set of values
found after the algorithm reached steady state error on Trajectory 2. One heuristic
way to arrive at an initial set of & values was to-switch the magnitudes of parameters
one and two. This method usually allowed the manipulator to track the trajectory
without becoming unstable, but not always. This particular issue will be addressed

further in chapter 5.

4.8.8 Robustness to Payload Variation The AMBC/PBPA algorithm provides
essentially the same robustness to payload variation as does the AMBC/H algorithm
(Figure 4.7 and 4.8). These figures show the performance of both the AMBC/H and
the AMBC/PBPA algorithms over Trajectories 1 and 3, carrying a 2 Kg payload.
The performance of both is degraded, as compared to their no load counterparts;
however, both the AMBC/H algorithm and the AMBC/PBPA algorithm provide

essentially the same accuracy after five passes.

4.3.4 Decreasing Number of Estimated Parameters

Since a byproduct of the Principal Base Parameter Analysis is an ordering of the
parameters by strength, there is now a mathematical basis for decreasing the number
of estimated parameters. Leahy and Whalen used their extensive knowledge of the
PUMA dynamics as a basis for parameter reduction. Unfortunately, most industrial

applications will not have the luxury of that expertise. Since the elements of p* are
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Table 4.3. Comparison of @ Values; 16 Estimated Parameters

Parameter | Physical | After Traj 1, | After Traj 2, | After Traj 3
Number Values Run 5 Run § Runb5
1 28477 3.5538 - 3.641 1.9504
2 -9.66729 -51.5196 -50.0590 -49.4823
3 7.52559 -6.7353 -6.2001 -6.8044
4 6.820 -0.1414 0.0082 0.4095
5 5:950 2.1692 4.3580 4.0610
6 4.5 -6.4271 -5.8339 -5.7234
7 3.91 6.9872 6.1118 6.3920
8 3.5 -0.4327 -0.2136 0.1080
9 3.5 1.6702 -0.5122 -0.6259
10 1.49726 -0.4741 0.4858 0.5110
11 1.32209 6.8264 7.1849 7.0275
12 -1.29028 4.4262 4.4432 4.3942
13 -1.09687 5.1568 5.65619 5.0783
14 0.680048 5.4671 5.4393 5.5478
15 -0.618251 5.5158 5.4455 5.4122
16 -0.460108 -4.6204 -4.5763 -4.5672

ordered by sensitivity, if it is desired to reduce the number of estimated parameters,
one can simply remove the appropriate number of parameters from the end of p*.
When the number of estimated parameters decrease, the number of non-estimated
parameters increase correspondingly (refer to section 4.2.2). Figures 4.9-4.11 illus-
trate the effect of reducing the number of estimated parameters. It can be seen
that minimal degradation in tracking accuracy occurs until only seven parameters
are estimated. Table 4.4 sets out the final & values for the same trajectories as were

used in Table 4.3.
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Table 4.4. Comparison of & Values; 7 Estimated Parameters

Parameter | Physical | After Traj 1, | After Traj 2, | After Traj 3
Number | Values Run 5 Run 5 Run 5
1 28.477 0.2242 3.641 -1.3817
2 -9.66729 -55.5330 -50.0590 -52.4891
3 7.52559 -5.4105 -6.2001 -6.3326
4 6.820 -0.8487 0.0082 1.0310
5 5.950 2.0968 4.3580 4.6289
6 4.5 -5.0666 -5.8339 -3.3298
7 3.91 8.2137 6.1118 5.6362

This simple method of parameter reduction is another advantage of AMBC/PBPA
over AMBC/H. As previously stated, if it were desired to reduce the number of pa-
rameters estimated on line, one could simply use nomimal physical values for the non-
estimated elements of the AMBC/PBPA parameter vector. This simple reduction
technique is impossible with AMBC/H - one cannot (without extensive knowledge

of the manipulator dynamics) judge the relative importance of the parameters.

One surprising result came out of this parameter reduction exercise. In all cases,
as expected, performance decreased as less parameters were estimated (adapted).
However, in some cases, when the number of estimated parameters is decreased from
seven to four, tracking accuracy actually increases (Figures 4.12 and 4.13). This

result is incongruent with the expected results and bears further investigation.

4.8.5 Importance of Accurate Knowledge of Physical Values

Adaptive algorithms, as a whole, may enable a controller to overcome lack of
a priori knowledge of the dynamics of a manipulator. This section is to address the
importance of accurate knowledge of the physical values of the manipulator under
study (e.g. masses, link lengths, inertiasj. For this test, the physical values, as given
by Tarn and Bejczy are varied by +/- 20% [27]. P* was then re-normalized and used
in place of the original I'"! (refer to sections 3.2.2and 4.2.3). Figures 4.14 and 4.15
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show that the AMBC/ PBPA controller is somewhat sensitive to accurate knowledge
of physical system values; however, this a priori knowledge is not absolutely essential
to operation. Figure 4.14 demonstrates an oscillation on the -20% error plot. This
oscillation can be squashed by lowering the scale factor slightly, with a corresponding

increase in time to steady state error.

4.8.6 Adaptation versus Pattern Learning

The previous sections have demonstrated that the AMBC/PBPA algorithm can
adapt sucessfully to new trajectoies. Another questions to be asked is whether the
algorithm is adapting during the run, evea after steady state error is reached. Figures
4.16 addresses this issue. Ior this test, the indicated trajectory was run until steady
state error was reached. After steady state error occurred, the adaption was turned
off (I'"! = 0) causing the trajectory to be run with a constant feedforward torque
applied. Figure 4.16 shows that adaptation is occurring during the trajectory, even
after steady state error is reached. This is an indication that the algorithm has not

simply ’learned’ a pattern.

4.8.7 Soft PD Gains

All of the testing up to this point has used stiff PD feedback gains (ref 4.1)
in conjunction with the AMBC algorithm. This portion of the test plan adjusted
the PD gains to the ’soft’ values shown in Table 4.5. The use of high feedback gain
initially improves PUMA tracking performance (e.g. before adaptation) [18, 15].
Figure 4.17 shows how this change affects performance. Initially, tracking error is
higher, but steady state error is essentially the same (as compared to the high PD

gain plots).

If these results are compared to those shown is Figure 2.1 (Trajectory 1, stiff
PD gains), two items should be noted. First, the relative tracking performance of

the two algorithms remains the same - AMBC/I1 is better by an approximate factor




Joint 2
0.004 1 ¥ i T T

0.003

0.002

0.001

0.000

-0.001 ~

Error (radians)

~0.002 } f B ]

_0'003 1] ] 1 i L
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (seconds)
Joint 3
0.008 i T T T T

0.006 | : f% .
0.004 | E . f% .
0.002 RN
.000

-0.002

Error (radians)
O

-0.004

-0.006 | Y i

_0.008 i 1 L i 1 ) ‘\‘
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (seconds)

Figure 4.14. Effect of Varying Physical Parameter Values: Trajectory 1, Run 5

— | Best Estimate || ~—=-- | Best Estimate +20%
"""""" Best Estimate -20%

4-24




.003
.002
.002
.001
.001
.000
.000
.001
.001

Error (radians)
o OO OO O O O o o o o

.002

0.25 0.50

0.75 1.00 1.25 1.50

Time (seconds)
Joint 3

0.008

0.006

0.004

0.002

0.000

Exrror (radians)

-0.002

-0.004

-0.006

~
7
YA

0.00

0.25 0.50

0.7 1.00 1.25 1.50

Time (seconds)

Figure 4.15. Bffect of Varying Physical Parameter Values: Trajectory 3, Run 5

Best Estimate " """

............

Best Estimate -20%

| Best Estimate +20%

4-25




Error (radians)

Error (radians)

.003 . ; . . -
.002
.002
.001
.001
.000
.000
.001
.001

.002 1 [ i 1 [l
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (seconds)
Joint 3
0.008 T T T T T

o O O O O O o o o o

0.006

0.004

0.002

0.000

-0.002

-0.004

_00006 \\J/l 1 1 ! 2
0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time (seconds)

Figure 4.16. Effect of Discontinuing Adaptation - Trajectory 1

— | AMBC/PBPA with Adaptation ||
"""" AMBC/PBPA without Adaptation ||




Error (radians)

Error (radians)

00010 ' T 1 L] ]

0.008

0.006

0.004

0.002

0.000

~0.002 } =, s

_0.004 1 [] 1 1 —
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (seconds)
Joint 3
.008 T T T T T

0

0.006 | P :
0.004 | TN ~
X / i
0

.002

.000
-0.002
-0.004
-0.006
-0.008
-0.010 .~
-0.012 | L -

~0.014 r ' ' ' '
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (seconds)

Figure 4.17. Effect oi Sov. PD Gains, Trajectory 1, No Payload

— | AMBC/H, Run 1
_____ AMBC/H, Run 5
............ AMBC/PBPA, Run 1
pypm— AMBC/PBPA, Run 5

4-27




Table 4.5. Soft PD Fegdback Gains

Joint 1 | Joint 2 | Joint 3 "
K, | 250.0 | 520.0 | 96.0 |
K,| 70 ] 130.0 | 25.0 ||

of two. Secondly, while the initial error is much higher for the soft PD gain scenario,

steady state error for both cases (soft and stiff PD gains) is close to the same profile.

4.8.8 Two Way Tracking FEvaluation

The testing described in the previous sections moved the manipulator through
unidirectional trajectories. Figure 4.18 shows the effect of a bidirectional trajectory.
This particular test moved the arm through Trajectory 1, then back to the initial po-
sition after a midpoint pause of 500 msec. This figure shows that the AMBC/PBPA
algorithm still provides excellent tracking accuracy. The spike just past midpoint is

due to drive train stiction, as the manipulator changed direction.

4.8.9 Very Slow Tracking

This scenario (Figure 4.19) is included to provide a link to previous AFIT re-
search [15]. As with previous scenarios, AMBC/PBPA provides essentially the same
tracking accuracy as does the AMBC/H algorithm. This particular scenario is valu-
able in showing that even with the stiff PD gains, the manipulator can successfully

track without significant vibration.

4.8.10 Effect of Varying the T~ Scaling Factor

At several points during this report, the scaling factor for the AMBC/PBPA
algorithm has been discussed. Figures 4.20 and 4.21 illustrate the importance of this
scaling factor. As stated in section 4.2.3, the scaling factor used for the previous plots

was 0.02. Again, this was the largest value that could be used while allowing tracking
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over the entire trajectory suite. This value was determined experimentally; however,
this tuning process took minutes as opposed to the months required to tune the
AMBC/H I'"1. If the scaling factor is set too high, instability occurs. If the scaling
factor is too low, time to steady state error increases. The scaling factor chosen
for some arbitrary task is trajectory dependant. That is, for a repetative, single
motion, the scaling factor can be set somewhat higher, causing quick convergence to
steady stale error. An application that has many associated motions would require
a smaller scaling factor - this trades off time to steady state error against flexability.

Regardless, changing the scale factor is only the matter of a few keystrokes.

4.8.11 Numerical Comparison

In a recent paper by Whitcomb, Rizzi and Koditschek [19], they state that a
visual comparison of graphs, such as those used in this study, often become an act of
aesthetic judgement rather that empirical analysis. They propose that using a scalar
norm (»?) would be a preferable alternative since it would provide a single, numerical

measure of tracking performance for the entire error plot [19]. Their equation is

le(t] = (7 [ eIty @)

where e(t) is a sclected scalar (or vector) valued tracking error. The norm measures
the root-mean-square ’average’ of the tracking error, thus a smaller #? represents a
smaller tracking error [19]. This equation was applied against all of the trajectories
and selected runs and the results are compiled in Table 4.6. For each of the cases
shown, the equation was applied to the error profile for the equivalent AMBC/H
and AMBC/PBPA run. The resultant number for AMBC/H was then divided by
the resultant number for AMBC/PBPA. The final, single scalar value is the ratio
of the AMBC/H error to the AMBC/PBPA error. Therefore, if ¥*> = 1 it indicates
that both algorithms delivered the same error performance, v? < 1 indicates that

AMBC/H performed better and if v* > 1, AMBC/PBPA performed better. One

4-31




0

0
B

= 0
-r
T
©

] 0
4

g -0
¥
&

-0

-0

0

0
)
G
o

’O 0
©
2

H 0
0
Y
¥
&

-0

-0

Figure 4.20.

.015 T T ¥ T —
.010
.005
.000
.005
.010

.015 (|l —t ] /] 3

0015 1 i L] 4 L]

.010

.005

.000

.005

.010 NSy 1 i ! 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (seconds)

Joint 3

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (seconds)

Iffect of Varying I'"? Scale Iactor for AMBC/PBPA Algorithm, Tra-
jectory 1, Run 1

— | Scale Factor = 0.001
””” Scale Factor = 0.005
R Scale Factor = 0.01
= Scale Factor = 0.03

4-32




Error (radians)

Error (radians)

Figure 4.21.

.006
.004
.002
.000
.002
.004
.006

.008

.004

.002

.000

.002

.004

.006

.008

Joint 1

.010 :

0.00 0.25

0.50 0.75 1.00 1.25 1.50

Time (seconds)
Joint 3

£ \ :..-':':-..-.':-.u; ............... ".....\.
DATA A ','..r I . ;
ARy AR A,
L\Y] I [
VAR

-{:I\,"J'

.010 :

0.00 0.25

Effect of Varying I'"! Scale Factor for AMBC/PBPA Algorithm, Tra-

jectory 1, Run 5

0.50 0.75 1.00 1.25 1.56
Time (seconds)

Scale Factor = 0.001

Scale Factor = 0.005

Scale Factor = 0.01

Scale Factor = 0.03

4-33




piece of abberant behavior should be noted - AMBC/H was unable to track Trajec-

tory 4 after 3 runs; therefore, the values shown for that particular:case are unusually

large.
Table 4.6. Comparison of Tracking Errors using Equation 4.5
Trajectory Run # 1 Run # 5

Joint 1| Joint 2 | Joint 3 || Joint 1 | Joint 2 | Joint 3
1 0.3248 | 0.9370 | 1.1189 || 0.6535 | 0.5302 | 0.5984
2 0.2528 | 0.1650 | 0.2883 || 0.6198 | 0.7052 | 0.7735
3 0.9434 | 1.3639 | 1.2248 || 0.7177 | 1.3013 | 0.6257
4 0.8876 | 0.7236 | 0:5491 | 26.2056 | 25.2412 | 19.0522
5 0.8655 | 0.3345 | 1.6882 || 1.5449 | 0.6516 | 1.2481
6 0.6510 | 0.6110 | 0.4085 | 0.9505 | 0.4219 | 0.6420
1(2Kg) | 0.7072 | 1.7161 | 1.1891 || 0.6232 | 0.6516 | 0.4915
3 (2Kg) | 0.4087 | 1.1055 | 1.3721 || 0.6630 | 0.7152 | 0.4699

Table 4.6 reinforces what can be seen in all of the figures that compare

AMBC/H to AMBC/PBPA - that is, while AMBC/H usually provides somewhat

better error tracking, both algorithms perform to the same order of magnitude. Ex-

cept for the abberant case of Trajectory four, at no time does either algorithm out-

perform the other by more than a factor of four - typically, AMBC/H outperforms

AMBC/PBPA by a factor of two. This difference in performance is a significant

amount (e.g. two times as good); however, it must be remembered that these errors

are in thousandths of radians. At such a level of accuracy, a difference of two to

one would be insignificant for most industrial applications. Additionally, it must be

remembered that the AMBC/PBPA algorithm was tuned in minutes versus months

for the AMBC/H algorithm. In many applications, this time savings may be an

acceptable trade-off for the decrease in performance.
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4.4 The Utah/MIT Dezterous Hand

As stated earlier, the intention was to cross check this procedure on a second
manipulator - specifically, the UTAH/MIT Dexterous Hand (UMDH). Since the time
of the study performed by Rainey, [22] the computer interface to the UMDH (along
with the associated operating system) has changed. This hardware change neces-
satated software changes. Unfortunately, due to delays in the hardware becoming
operational, the tie does not remain to complete this part of the study. To date,
PBPA has been completed on the UMDH, using the same 2 DOI' configuration as
Rainey [22]. In addition, the results of the PBPA have been used to create an AMBC

algorithm for the hand. Only the test and evaluation of this algorithm remains to be

done. Completion of this project should be considered as an area for future study.

4.5 Summary

A exhaustive comparison of the two algorithm versions has been performed.
These results indicate that actually able to provide the minimal set of parameters
needed by and Adaptive Model-Base Control algorithm. Furthermore, this method
of determining the minimal parameters also allows for a quick and simple method of

tuning the AMBC controller for optimal performance.

4-35




V. Conclusions and Recommendations

5.1 Conclusions

Principal Base Parameter Analysis provides a straightforward, mathematical
method for determining the base parameter set of a vertically articulated manipu-
lator. More importantly, this analysis allows the user to easily fine tune the feed-
forward gain for optimal performance in a logical, methodical manner. This Tun-
ing/Parameter Reduction technique has two advantages. First, the straightforward
procedure frees the AMBC designer from needing extensive knowledge of the manip-
ulator dynamics. The second advantage is the great time savings during the tuning
process. Starting with just the torque equations, a designer with knowledge of the
PBPA process and a symbolic mathematics.software package can design and imple-
ment an AMBC algorithm in just a few short hours. This quick design may not
meet or exceed the performance of an AMBC algorithm tuned over the course of
months, but for many industrial applications, this performance degradation would

be acceptable in light of the time savings.

The AMBC/PBPA closely paralleled the performance of the AMBC/H algo-
rithm in every test scenario presented. In the areas of simple trajectory tracking,
robustness to payload variation, very slow tracking et. al., the AMBC/PBTA algo-
rithm performed adequately. Furthermore, the AMBC/PBPA converged to steady
state error in three to five runs, as did the AMBC/H algorithm. These results lead
to the conclusion that PBPA is a viable option to be used in the design and tuning
of an Adaptive Model-Based Controller - with the caveat that the simplicity will be

al the cost of some performance degradation.

5.2 Recommendalions for Future Study

Often, advanced study efforts raise more guestions than they answer. This

study was no different. While PBPA may provide the push nceded to move AMBC
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out of the lab and onto the factory floor, not every question has been-answered. This

section will identify several areas which could be explored in-more depth.

5.3 Disparity Between AMBC/H and AMBC/PBPA

As was discussed in Chapter 4, AMBC/H typically outperforms AMBC/PBPA
by a ratio of 2 to 1. Theoretically, since they are both-derived from the same torque
equations, they should both provide the same approximate performance. Since this
is obviously not the case, where is the discrepancy? Two possible causes of this
discrepancy are the physical values used and the neglected dynamics. First, no
special effort was made to measure the physical parameters of the manipulator. This
approach was deemed acceptable since an AMBC algorithm is to overcome this lack
of accurate knowledge. Secondly, the only drive system information used was viscous
and coulombic friction. Consequently, any neglected drive system information was

accounted for in some other unrelated parameter.

5.4 AMBC/PBPA Fine Tuning

The attempt of the test and evaluation of the PBPA design process was kept
strictly in the realm of using one simple scale factor. If it were desired to improve
the performance of the AMBC/PBPA algorithm, it would be a simple matter to
Lieuristically fine tune the AMBC/PBPA algorithm further. While this type of fine
tuning certainly does not fit in with the non-heuristic procedure developed in this
study, it may be acceptable to expend some effort on fine tuning to improve perfor-
mance. The suggested area for future study is to quantify the performance gain if
a manual fine tune of the AMBC/PBPA algorithm is performed. A sccond, related
arca is Lo duplicate the test suite used in the study, using the maximum possible scale
factor in each individual case. Many robots usc¢ in standard industrial application
have a limited repetoire of motions. In such a casc it would be acceptable to have a

separate, optimal scale factor for cach movement.




5.5 Cross Check of Procedure on a Second Platform

As discussed ~arlier, the intent was to cross check the results of this study 0.
a second robotic platform. Due to delays in hardware development, this sideline
was not feasible. This particular area of study is of priu ¢ importance to prove
that the PBPA design technique is not platform specific. The second robot that
was designated to be the cross check platform was the Utah/MIT Dexterous Hand
(UMDH). This robot would be an excellent choice {or this type of study since it’s
internal dynamics are net well known (as are the PUMA’s). Consequently, any
heuristic tuning done on the UMDH would be simple trial an- error and not assisted
by any intuitive jumps of logic. If the PBPA developed AMBC algorithm could
out-perform a heuristically tuned AMBC algorithm, it would be substantial proof
that, PBPA is not just a quixotic idea.

The pursuit of these recommendations could advance PBPA as a possible AMBC

design approach into an integral part of every robotic design toolbox.

5.6 Summary

The PUMA 560 has been the platform used for extensive study of Adaptive
Modei-Based Control algorithms at the Air Force Institute of Technology [16]. Dur-
ing the course of these studies, researchers have been able to heuristically tune the
adaptation gains for optimal performance. Furthermore, they have been able to re-
duce the parameter set used with no negative effect on the tracking accuracy. The
purpose of this study was to apply the Principal Base Parameter Analysis technique
to the PUMA 560, incorporate the reduced parameter set into the existing AMBC
algorithm, then contrast the tracking accuracy achieved with the PBPA reduced
parameter set against previous results. The final result is that there is a method,
essentiaily free of heuristics, for developing and tuning an Adaptive Model-Based

Controller. The simple, straightforward procedure dectailed in this report may be




the key that allows AMBC to move out of the laboratory and into operational ap-

plications.
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Appendix B. PUMA=560, Three Degree of Freedom Values

As discussed in section 3.2.2, the following are the actual values used for the

regressor matrix, p* and the &; matricies in the AMBC/PBPA algorithm.

B.1 The Non-linear Function Vector, n0

n0(1) = QDD1

n0(2) = QDD1*sin?2

n0(3) = QDD1*cos2**2
n0(4) = QDDi*cos2*cos23
n0(5) = QDDi*cos2*sin23
n0(6) = QDD1*cos23

n0(7) = QDD1%*sin23

n0(8) = (QDD1i*cos23*sin23
n0(9) = (QDD1*sin23%%*2

n0(10) = QDD2
n0(11) = QDD2%sin?
n0(12) = QDD2%cos3

n0(13) = QDD2*sin3
n0(14) = QDD2*cos23
n0(15) = QDD2%*sin?23
n0(16) = QDD3

n0(17) = (QDD3*cos3
n0(18) = QDD3#*sin3
n0(19) = QDD3*cos23
n0(20) = QDD3*sin23

n0(21) = QD1

n0(22) = QDixx*2

n0(23) = QD1**2%cos2
n0(24) = QD1**2*cos2¥sin?
n0(25) = QD1**2*cos2%cos23

n0(26) = QD1**2%cos2¥sin23
n0(27) = QDi**2*sin2%sin?23
n0(28) = QD1**2*sin2+*sin3%sin23

n0(29) = QD1%%2%cos23*%%2
n0(30) = QD1*%2%sin3
n0(31) = QDi*%*2%cos3*sin3
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00(32)
n0(33)
n0(34)

no0(36) =
10(36) =

n0(37)
n0(38)
n0(39)
n0(40)

QD1xQD2
QD1i*QD2%*cos?2
QD1*QD2%cos2%sin?2
QD1*QD2*cos2%cos23
QD1*QD2*cos2%sin23

= D1*QD2*sin2%sin23

n0(41) =
n0(42) =

n0(43)
n0(44)
n0(45)
n0(46)
n0(47)
n0(48)
n0(49)

n0(51)
n0(52)
n0(53)
n0(54)
n0(55)
no0(56)
n0(57)
no(58)
n0(59)
n0(60)
n0(61)
n0(62)
n0(63)
n0(64)
n0(65)

n0(67)
n0(68)

QD1*QD2*sin2*sin3%sin23
QD1*QD2*cos23%%2
QD1*QD2%sin3
QD1*QD2*cos3*sin3
QD1*QD3
QD1*(D3*cos2*sin2
QD1*QD3*cos2*cos23

= QD1*QD3*cos2%sin23

QD1*QD3*sin2*sin3*sin23
QD1*(D3%cos23*%2
QD1*QD3*cos3*sin3

= QD2
n0(50) =
= (D2*QD3*cos3

QD2%*2%cos3

(D2*(D3*sin3

= (QD2*QD3*cos23
= (D2*(D3*sin23

QD2%%x2%*cos2

= QD2**2%cos23
= (D2%*2%s5in23

Q03
QD3%*2%cos3
QD3**2%sin3

= (QD3*%2%co0s23
= (QD3**2%sin23
= cos2

sin2

= co0s23
n0(66) =

sin23
i
QD2%**2%s5in3

B.2  Constant Matricies of Kinematic Parameters, k;

In the interest of space, zero values are not shown.
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k1t[[1,44]] = .7766
k1t[[21,381] = 1
k1t[[1,1]1] =
kit[[1,6]] =
kit[[1,23]]
kit[[1,24]]
k1t[[1,30]]
1t[[67,41]]
kit[[1,18]]
k1t[[1,26]]
k1t[[32,20]] = -2
k1t{[{42,20]1] = -2
k1t[[33,3]] = -4
k1t[[55,4]] = 1
k1tl[3,5]] = 1
kiti[3,6]1] = -1
k1t[[3,71] = 1
kitl[3,16]] = 1
ki1t[[3,2]] =
k1t[[56,22]]
k1t[[563,22]]
kit[[61,22]]
kit [[56,25]]
kit [[53,25]]
kit[[61,25]]
k1t[[56,19]]
k1t [[53,19]]
kit[[61,19]1]
kit[[14,27]]
ki1t[[19,27]]
kit[[4,17]]
k1t [[4,13]]
kit[[35,15]]
kit[[44,15]]
k1t[[39,20]]
kit[[47,20]]
kit[[11,12]1]
kit[[11,14]]
kit[[11,4]]
k1t[[34,5]]
k1t[[34,61]
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k1t[[34,7]] = -2

ki1t[[34,16]1] = -2
k1t[[34,23]] = -2
k1t[[43,23]] = -2
kit [[34,28]] = 2
k1t[[43,28]] = 2
k1t[[34,30]1] = -2
k1t[[43,30]] = -2
k1t[[34,2]] = -4
ki1t[[34,18]] = -4
kit[[42,18]] = -4
k1t[[40,171] = 2
k1t[[40,13]] = 2
kit[[41,23]] = -2
k1t{[48;23]] = -2
k1t[[41,28]] = 2
kit[[48,28]] = 2
ki1t[[41,30]] = -2
kit[[48,30]] = -2
ki1t [41,18]] = -4
k1t[[48,18]1]1 = -4
x1t[[15,22]]1 = 1
kit[[20,22]1 = 1
k1t[[15,25]] = 1
k1t[[20,19]]1 = 1
k1t[[57,27]1] = 1
k1t[[54,27]1] = 2
k1t[[62,27]1]1 = 1
x1t[[36,17]] = -4

kit[[45,17]1] = -2
k1t[[36,13]] = -4
k1t[(45,13]] = -2
k1t[[5,15]] = 2
ki1t[[8,20]] = 2

kit[[37,15]] = -2
k1t[[38,23]] = 4
kit[[46,23]] = 4
k1t[[38,28]] = -4
kit[[46,28]] = -4
k1t{[38,30]] = 4
k1t[[46,30]1] = 4
kit[[38,18]]1 = 8




kit[[46,18]]1 = 8
k119,237 = -1
k1t[[9,28]1]
k1t [[9,30]]
kit[[9,18]]

n a mw n
(Y

ket [[10,44]
k2t[[4-,39]
nat[[_i 3 5]] =
k2t[[10,8]] =
k2t [[10,29]]
k2t[[16,29]]
k2t [[10,16]]
]
1

]
]

k2t [[10,23]
k2t[[16,23]
k2t[[67,42]]
k2t[[10,2]1] =
k2t[[10,18]]
k2t[[16,18]]
k2t[[22,20]]
k2t[{63,31]]
" k2t[[63,34]]
k2t[[63,32]]
k2t [[23,3]] = 2
k2t[[12,1713
k2t[[17,17]1]
k2t[[12,131]
k2t [{17,13]1]
k2t [{54,15]1]
k2t [[59.15]]
k2t[[65,35]1]
k2t[[65,36]]
k2t [[6,27]1]
x21:[[25,15]]
k2t [[29:20]1]
k2t[[2,12]] = 1
x2t[[64,33]] =
k2t[[2,14]]
k2t{[24,5]]
k2t [[24,6]]
k2t {[24,71]
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k2t [[24,16]]
k2t [[24,23]]
k2t [[24,28]]
k2t [[24,30]]
k2t[[24,2]]1 = 2
k2t[[24,18]]
k2t [[30,17]]
k2t [[52,171]
k2t [[60,17]]
k2t [[30,13]]
k2t [[52,13]]
k2t [[60,13]]
k2t[[13,15]]
k2t[[18,15]]
k2t [[31,23]]
kt[[31,18]]

k2t [[7,22]]

k2t [[7,25]]

k2t [[7,19]]

k2t [[66,37]3
k2t[[26,17]1]
k2t [[26,13]]
k2t [[27,15]]
k2t [[28,23]]
k2t[[28,28]1]
k2t [[28,30]]
k2t [[28,18]]
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k3t[[16,44]]
k3t [[58,40]]
k3t [[10,29]]
k3t [[16,29]]
k3t[[10,23]]
k3t [[10,18]]
k3t{[16,18]]
k3t{22,20]]
k3ti1{12,171]
k3t1[12,13]1]
k3t [[50,151]
k3t[[65,35]]
k3t[[65,36]]

B nun v un uw u wun nn
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k3t[[6,2711 = -1

k3t[[25,15]]
k3t [[29,20]]
k3t [[24,23]]
k3t [[24,28]]
k3t [[24,30]]
k3t [[24,18]]
k3t[[68,17]]
k3t [[68,13]]
k3t[[13,15]]
k3t [[31,23]]
k3t [[31,28]]
k3t [[31,30]]
k3t[[31,18]] :
k3t [[7,22]]
k3t [[7,25]]
k3t[[7,19]]
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1

k3t[[66,37]] = -1

k3t[[26,17]]
k3t[[26,13]]
k3t [[28,23]]

1
1
-2

k3t[[28,28]] = 2

B.83 The Non-reduced Parameter Set, p

The physical values are as found in [27].

p(L)
p(2)
p(3)
p(4)
p(5)
p(6)
p(7)
p(8)
p(9)
p(10)
p(11)

nmn o nnn

mlxkyyl
m2*aa2*xbar?2
m2*aa2*ybar?2
m2*aa2*%zbar?2
m2kaa2%*2
m2¥kxx2
m2xkyy2
m2%xkzz?2
m2*kxx2
m3*xbar3
m3*ybar3




p(12) = m3*aa2*dd3

p(13) = m3*%aal2+*xbar3
p(14) = m3*%aa2xybar3
p(15) = m3*aa2+zbar3

p(16) = m3*aal2*x2
p(17) = m3%aa2*aa3
p(18) = m3*aa3+*xbar3
p(19) = m3*aa3*ybar3

p(20) = m3+*aa3*zbar3
p(21) = m3*aa3

p(22) = m3+%aa3+dd3
p(23) = m3*aal3*x2
p(24) = m3%dd3#%2
p(25) = m3*dd3*xbar3
p(26) = m3*dd3*ybar3
p(27) = m3*dd3#*zbar3

p(28) = m3*kxx3
p(29) = m3*kyy3
p(30) = m3%kzz3

p(31) = m2*GRAV*aa2
p(32) = m2*GRAV*xbar2
p(33) = m2*GRAV*ybar2
p(34) = m3*GRAV*aa2
p(35) = m3*GRAV*aa3
p(36) = m3*GRAV*xbar3
p(37) = m3*GRAV*zbar3

p(38) = bn21
p(39) = bn22
p(40) = bn23

p(41) = sftoril
p(42) = sftor2
p(43) = sftor3
p(44) = 1

B.4 The AMBC/PBPA Regressor Matriz

¥Y(1,1) = 0. - 1.291916379341979*QD1*QD2%cos2 +
1.223543615235044*10%*~16%QDD2*sin?2 -
6.95748284379206%10%%~17+ (~(QD2**2%cos2) - QDD2%sin2)




Y(1,2)

Y(1,3)

Y(1,4)

Y(1,5)

Y(1,6)

Y(1,7)

Y(1,8)

¥(1,9)

Y(1,10) =

Y(1,11) =

¥(1,12) =

0. - 3.785624396158174%QD1*(D2%cos2

1.0

QD1

0. - 1.434315310235834%10%*~16*QD1*QD2*cos2 +
1.102070113928819*QDD2%sin2 -
0.6266743428547707*(-(QD2**2*cos2) - QDD2%*sin?2)

0. - 0.£86251354856464%QDD2%sin2 -
0.7792812509020992% (- (QD2**2%cos2) - QDD2*sin?2)

-0.295459647105532+QDD1 +
0.01225149578425218*(-QDD1 + 2%(DD1i*cos2¥*2 —
4%QD1*QD2*cos2*sin2) -

1.377020985552159% (~QDD1 + QDD1¥cos2%*2 -
2%QD1*QD2*cos2*sin?2) +

3.939813994754334* (~2*QD1*QD2*cos2%sin2 -
2#(QD1*QD3*cos2*sin2 - 2*QD1*QD2*cos3*sin3 —
2*QD1*QD3*cos3*sin3 + 4*QD1*(QD2*sin2*sin3*sin23 +
4¥QD1%QD3*sin2*sin3*sin23 -~ QDDi*sin23**2) +
1.613375882778644* (2*QD1*QD2*cos2*sin2 +
2xQD1*(QD3%cos2*sin2 +

2xQD1*QD2*cos3*sin3 + 2*(D1*QD3*cos3*sin3 -
4%QD1*QD2*sin2%sin3%sin23 -
4%QD1#QD3*sin2*sin3*sin23 + QDD1*sin23%%2) +
3.636549415076395%(-QDD1 + 2%QD1*QD2*cos2%sin2 +
2%QD1*QD3%*cos2%sin2 + 2*(QD1*QD2*cos3%sin3 +
2*(QD1*(QD3*cos3*sin3 - 4*(QD1*QD2*sin2*sin3*sin23 -
4*(D1*QD3*sin2*sin3*sin23 + QDD1*sin23%%2)




¥(1,13)

0.

Y(1,14) 0.03071435139678527+QDD1 +
0.0971847547297091%(-QDD1 + 2*QDD1*cos2#%2 -
4xQD1*QD2%cos2*sin2) +

0.907177973662084%(-QDD1 + QDD1%¥cos2%*2 -
2+QD1¥(QD2*cos2*sin2) =
0.944620431342006*(-2*QD1*QD2*c632*sin2 -
2+QD1*QD3*cos2*sin2 - 2*QD1*#QD2*cos3¥sin3: -
2*QD1*QD3*cos3*sin3 + 4*QD1*QD2*sin2*sin3*sin23 +
4¥QD1*QD3*sin2*sin3*sin23 - QDD1*sin23*%2) +
1.656684419083955% (2*QD1*QD2*cos2*sin2 +
2*QD1*QD3*cos2*sin2 +

2*QD1*QD2*cos3*sin3 + 2%QD1*QD3%*cos3*sin3 -
4*QD1*(D2*sin2*sin3*sin23 -
4*QD1*QD3*sin2*sin3*sin23 + QDD1i*sin23*%2) -
1.105183688973447*(-QDD1 + 2*%QD1*QD2*cos2%*sin2 +
2*QD1*(]D3*cos52¥sin2 + 2*QD1*QD2*cos3*sin3 +
2*%()D1*(D3*cos3*sin3 - 4*QD1*QD2*sin2*sin3*sin23 -
4*QD1*QD3*sin2*sin3*sin23 + QDD1*sin23%*2)

Y(1,15) = -0.1907450736312253*QDD1 +
0.07015604633145501*%(-QDD1 + 2*(QDD1*cos2%*2 -
4*(QD1xQD2*cos2*sin2) +
0.58513755877427%(-QDD1 + QDD1*cos2%*2 -
2*QD1*(QD2*cos2*sin2) +
0.0950052880231652%(~2*%QD1*QD2*cos2*sin2 -
2*QD1*(QD3*cos2*sin2 - 2%(D1*QD2*cos3*sin3 -
2*(D1*QD3*cos3*sin3 + 4*QD1*QD2*sin2¥sin3*sin23 +
4*QD1*QD3*sin2*sin3*sin23 = QDD1*sin23*%2) -
0.001127205963008193* (2*QD1*QD2*cos2*sin2 +
2%QD1#QD3¥cos2*sin2 + 2+%QD1#QD2*cos3*sin3 +
2*QD1*QD3*cos3*sin3 - 4*QD1#QD2*sin2*sin3*sin23 ~
4*QD1*QD3*sin2*sin3*sin23 + QDD1*sin23**2) -
1.476001365402235*(-QﬁD1 + 2%QD1*0D2*cos2¥sin?2 +
2*QD1*QD3*cos2¢sin2 + 2%QD1*GD2%cos3*sin3 +
2*QD1%(QD3*cos3*sin3 ~ 4*(D1#(QD2*sin2*sin3*sin23 -
4*QD1*QD3*sin24sin3*sin23 + QDD1¥sin23%%2)

Y(1,16) = -0.3680403457911835%QDD1 +
0.1524306276280933%(-QDD1 + 2%QDDi*cos2%*2 -




4xQD1*QD2*cos2%sin2) -

1.367130671348102%(-QDD1 + QDDikcos2**2 =
2%QD1*QD2%Cos2*sin2) -

1.220605484649777* (-2*QD1*QD2*cos2*sin2 =
2%QD1*QD3*cos2%sin2 - 2*QD1%QD2*cos3%sin3 -
2*QD1*QD3*cos3*sin3 + 4*QD1*QD2%sin2*sin3*sin23 +
4%QD1*QD3*sin2*sin3*sin23 - QDD1i*sin23%%2) -
0.7599456368395224% (2*QD1*QD2*cos2*sin2 +
2*QD1*#QD3*cos2*sin2 + 2¥QD1*QD2*cos3*sin3 +
2%QD1*QD3*cos3*sin3 - 4*QD1*QD2*sin2*sin3*sin23 -
4%QD1*QD3*sin2*sin3*sin23 + QDD1i*sin23%%2) -
1.124898280211656%(-QDD1 + 2*QD1%QD2%cos2*sin2 +
2*(QD1*QD3*cos2*sin2 + 2*QD1*QD2*¥cos3*sin3 +
2%QD1*QD3*cos3*sin3 - 4*QD1*QD2*sin2%sin3*sin23 -
4xQD1*QD3*sin2*sin3%sin23 + QDD1¥5in23%%2)

Y(1,17)

0. + 1.%(~-2*QD1*QD2*cos2*Cos23 -
2*+QD1*QD3*cos2%cos23 - 2%QDD1*cos2*sin23 +
2%QD1*QD2*sin2%sin23)

Y(1,18) = -0.4217098280971802*QDD1 +
0.4935339141969876%(-QDD1 + 2*(DD1*cos2%%2 -
4xQD1*QD2*cos2*sin2) +
0.820526775345378+(-QDD1 + QDD1%cos2%*2 =
2%QD1*QD2*cos2*sin2) -

0.6732582230870278% (-2*QD1*QD2*cos2*sin?2 -
2%QD1*QD3%*cos2*sin2 - 2*QD1*QD2%*cos3*sin3 -
2%QD1*QD3*cos3*sin3 + 4*QD1*QD2*sin2*sin3*sin23
4*QD1*QD3*sin2*sin3*sin23 - QDD1¥sin23%*2) -
0.2580049694968252% (2%QD1*QD2*cos2%sin2 +
2*QD1*QD3*cos2*sin2 + 2*QD1*QD2%cos3*sin3 +
2%QD1*QD3*cos3*sin3 ~ 4*(QD1*QD2*sin2*sin3*sin23
4%QD1*QD3*sin2*sin3*sin23 + (DD1*sin23%*2) -
0.0893179992172112%(~QDD1 + 2*QD1*QD2*cos2*sin2
2%QD1*QD3*cos2*sin2 + 2*(QD1*QD2*cos3*sin3 +
2+%QD1*QD3*cos3*sin3 - 4*QD1*QD2*sin2*sin3*sin23
4%QD1*QD3%sin2%sin3%sin23 + QDD1%sin23%%2)

+

+

¥(1,19)

0.

Y(1,20)

0. - 1.%(QDD2%cos23 + QDD3%cos23 - QD2**%2%sin23
2%QD2*QD3%*sin23 - QD3*%2%sin23)
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Y(1,21) = -0.4064372364733833*QDD1 -
0.6845964743997872%(~(DD1 + 2%QDD1*Cos2#%2 -
4*QD1*#QD2*cos2%sin2) +
1.1816585758700407* (-QDD1 + QDDi*cos2#*2 -
2xQD1*QD2*cos2*sin2) -

1.176170709788934% (-2*QD1*QD2*Cos2¥sin2 -
2%QD1*QD3*cos2*sin2 ~ 2#QD1*QD2%cos3*sin3d =
2%QD1*QD3*cos3*sin3 + 4*QD1*QD2*sin2*sin3*sin23 +
4%QD1*QD3*sin2*sin3*sin23 - QDD1*sin23%%2) -
0.0912676865211562%(2*QD1*QD2*cos2*sin2 +
2%QD1*(QD3*cos2*sin2 + 2¥(D1*QD2*cos3*sin3 +
2xQD1*¥QD3*cos3*sin3d - 4*QD1*QD2*sin2%sin3*sin23 -
4xQD1*QD3*sin2*sin3%sin23 + (QDD1xsin23**2) -~
0.923105350898833* (-QDD1 + 2#QD1*QD2%*cos2%sin2 +
2%QD1#QD3*co52%sin2 + 2%QD1*QD2%cos3*sin3 +
2%QD1*(D3*cos3%sin3 - 4*QD1*QD2%sin2%sin3*sin23 -
4%(QD1*QD3*sin2*sin3*sin23 + QDD1*sin23+*%2)

Y(1,22) = 0. - 1.%(2%QD1*QD2 + 2*QD1*QD3 -
4%QD1*QD2*Cos23%%2 -
4%QD1*(QD3*cos23*%2 - 2*%(DD1*cos23*sin23)

Y(1,23) = 0. - 1.414213562373096%(-2%QDD1*cos2%cos23 -
2%QD1*QD2*sin3 + 4*QD1*QD2%cos2*sin23 +
2*xQD1*QD3*cos2*sin23)

Y(1,24) = 0. - 1.732050807568877+ (- (QD2**2%cos23) -
2%QD2*QD3%cos23 - QD3**2%cos23 - QDD2*sin23 -
QDD3*sin23)

Y(2,1) = 0. - 1.639223448129551*cos2 +
0.6459581896709893%(QD1**2*cos?2

Y(2,2) = 0. + 0.5594162020376836%cos2 +
1.892812198079087*QD1**2%cos2

¥(2,3) = 0. - 1.%sin23

Y(2,4) = 1.0
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Y(2,5)

Y(2;6)

Y(2,7)

Y(2,8)

Y(2,9)

1]

¥(2,10)

i

Y(2,11)

Y(2,12)

¥Y(2,13)

Y(2,14)

¥(2,15) =

QD2

0. + 1.72874445678359%QDD1*sin2
0. - 0.1069701039543647*QDD1*sin2

-0.898477340464112%QDD2 +

3.484890831498359% (=QDD2 - QDD3) +
0.90984632651194* (-QDD2 - 2*(QD1**2%cos2%sin2) -
0.4671746590402205*(QDD2 = QDi**2%cos2ksin2) +
5.053141200540136% (- (QD1*%2%cos2%sin2) -
QD1*%2%cos3¥sin3 +

2%QD1**2*sin2*sin3*sin23) -

1.871514948719715%(<QDD2 - QDD3 - 2%(QDi¥*2%cos2¥sin2 -
2%(D1¥*2%cos3*sin3 + 4*QD1**2%sin2*sin3*sin23)

0. - 1.%sin2

0.0934007368769639%QDD2 -

0.6098328552114092%(-QDD2 - QDD3) -
0.6695751522611962%(-QDD2 - 2xQD1**2%cos2*sin2) +
0.2376028214008885%(QDD2 ~ QDi¥*2%cos2%sin2) -
3.036913387138213*% (~(QD1**2%cos2*sin2) =
QD1**2%cos3*sin3 +

2*QD1%*2%sin2%sin3*sin23) +

2.266517274295362% (-QDD2 - QDD3 - 2%QDi¥*2%cos2*sin2 -
2%(QD1%*2%cos3*sin3d + 4*QD1**2%sin2*sin3*sin23)

-0.580045796919265*QDD2 +
0.3134364897250736*(~QDD2 ~ QDD3) -
0.4368624034038167*(=QDD2 ~ 2%QD1**2kcos2*sin2) +
0.148275155370453*(QDD2 ~ QD1**2%cos2*sin2) -
0.943006468012244* (=(QD1**2*cos2*sin2) -
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Y(2,16) =

Y(2,17)

Y(2,18)

Y(2,19)

Y(2,20)

Y(2,21)

QD1**2%cos3*sin3 +

2%QD1**2%sin2*sin3*sin23) -

0.314563695688082* (~QDD2 - QDD3 - 2%QD1**¥2%cos2%sin2 -
2%QD1**2%cos3*sin3 + 4*QD1¥*2%sin2¥sin3*sin23)

-1.119191450708806*QDD2 -

1.625505499223111%(-QDD2 - QDD3) +
0.809800029146671*(~QDD2 ~ 2*QD1**2%cos2*sin2) -
0.5573306422014298%(QDD2 - QD1**2%cos2¥sin2) -
2.395358157168579* (-~ (QD1**2%cos2*sin2) -
QD1¥*2%*cos3%sin3 +

2*%QD1**2%sin2%sin3*sin23) +

0.865559862383588+ (-QDD2 - QDD3 - 2*QDi¥*2*cos2*sin2 -
2*QD1%*2*cos3%sin3 + 4%QD1¥*2*sin2*sin3*sin23)

0. + 1.%(-2*QD2%QD3*cos3 - QD3**2%cos3 +
QD1%*2%cos2%cos23 - 2%QDD2*sin3 - QDD3*sin3 -
QD1xk2xgin2*sin23)

-1.282397540605588%QDD2 -
O.235237993239572*(-QDD2 - QDD3) -
0.87604045969491%(~-QDD2- - 2%QD1*%2%cos2*sin2) -
0.0555136843495328+(QDD2 ~ QD1%*2%cos2*sin2) +
0.3714692068874966% (- (QD1**2*cos2*sin2) -
(D1*%2%cos3*sin3 +

2*%QD1%*2%gin2*sin3*sin23) - -
0.02276697625725266%(~-QDD2 - QDD3 -
2*%QD1**2%cos2%sin2 ~

2%QD1#*2%cos3%sin3- + 4%QD1%*2xsin2*sin3*sin23)

0. - 1.414213562373095%cos23
0. - 1.%(QDD1%cos23

-1.235954387915968%QDD2 -

1.010507615022058+(-QDD2 - QDD3) -

0.3313261895337464%(-QDD2 - 2*QD1**2%cos2*ksin2) +
0.850259569166661*(QDD2 - QD1%*k2%cos2*sin2) -
1.676682184632862*(-(QDi**Q*césZ*siﬁ2) -
QD1**2%cos3%sin3 +

2%QD1**2x3in2%sin3*sin23) +

0.919239928500904% (~QDD2 - QDD3 ~- 2*QD1i**2%*cos2%sin?2 =
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Y(2,22) = 0. - 1.%(-QD1%*2 + 2%QD1**2%cos23%*2).

Y(2,23) = 0. - 1.414213562373096* (-2%QDD2%cos3 -

Y(2,24) = 0. + 1.732050807568877*QDD1*$in23

Y(3,1)
Y(3,2)
Y(3,3)
Y(3,4)
Y(3,5)
Y(3,6)
Y(3,7)
Y(3,8)
Y(3,9)
Y(3,10)

Y(3,11)

Y(3,12)

2*QD1%*2*cos3*sin3 + 4*xQD1%*2ksin2*sin3*sin23)

QDD3*cos3 +
QD1%*2%sin3 + 2%QD2*#QD3*sin3 + QD3**2%sin3 -
2%QD1**2*kcos2*sin23)

0. - 1.*%sin23

-1.571266692953117*(QDD2 + QDD3) -
0.02105459491276347* (2*QDD2 + 2%QDD3 +
2%QD1x*2%cos2*sin2 +

2*(QD1*#2%cos3%sin3d = 4*QD1¥*2%sin2+sin3*sin23) +
1.648454916655984% (- (QD1**2%cos2%sin2) -
QD1**2%cos3*sin3 +

2%QD1**2*sin2%sin3*sin23) -
0.3804528033808055*(0.5827*QDD3 - QD1**2%cos2%sin2 -




QD1%*2%cos3*sin3 + 2%(D1%*2%sin2*sin3*sinz3)

Y(3,13)

0.

Y(3,14) = 1.226745384938757*(QDD2 * QDDS) -
1.441714902011356%(2%QDD2 + 2*(QDD3 +
2%QD1%*2%cos2ksin2 +
2*%QD1%*%2%cos3%sin3 - 4*%QD1**2*sin2*sin3*sin23) -
1.426858412589238+* (- (QD1**2*cos2*sin2) -
QD1**2#cos3*sin3 +
2%QD1%*2%sin2%*sin3*sin23) +
0.03954977001903942*(0.5827*QDD3 - QD1x**2%cos2*sin2 -
QD1**2%Cos3%sind + 2%QD1**2*s5in2%sin3%5in23)

Y(3,15) = -1.371048421615176%(QDD2 + QDD3) +
0.6860878137890928+ (2+QDD2 + 2*QDD3 +
2¥QD1*%2%cos2*sin2 +
2%(D1**2%cos3*sin3 - 4*QDi**2*sin2*sin3*sin23) +
0.04565736647876157* (- (QD1**2*cos2*sin2) -
QD1**2%cos3%*sin3 +
2*QD1%*2%sin2+sin3%sin23) -

0.245615598288984% (0.5827*(QDD3 - QD1**2*cos2*sin2 -
QD1**2%cos3*sin3 + 2%QD1**2%sin2%sin3*sin23)

Y(3,16) = 1.523064932932402*(QDD2 + QDDS) -
0.3815596480464399* (2%QDD2 + 2*QDD3 +
2%QD1*%2%cos2*sin2 +
2%QD1%*2%cos3%sin3 - 4*QD1%*2*sin2*sin3*sin23) -
0.953445359461082* (- (QD1**2%cos2*sin2) -
QD1*%2%cos3*sin3 +
2%QD1**2%sin2*sin3%sin23) -
0.4739123690332005*(0.5827*QDD3 - (Di**%2%cos2%sin2 -~
QD1**2%cos3*sin3 + 2%QD1**2%sin2%*sin3*sin23)

Y(3,17) = 0. + 1.%(QD2#%2*cos3 + QD1**2*cos2*cos23 - QDD2*sin3)

Y(3,18) = 0.957161576774482%(QDD2 + QDD3) -
0.349578303638828% (2#QDD2 + 2*QDD3 +
2*%(D1¥%2*cos2%sin2 +
2%QD1*%2%cos3*sin3 - 4*QD1*%2*sin2*sin3*sin23) +
0.1697992859019009% (- (QD1**2*cos2*sin2) -
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QD1%%2%cos3%sin3 +

2%QD1**2%sin2*sin3*sin23) -

0.5430206388065669% (0.5827+QDD3 - QD1**2%cos2*sin2 -
QD1%*2%cos3%sin3d + 2*QD1k*k2%sin2*ksin3*sin23)

Y(3,19)

0. - 1.414213562373095*%cos23

Y(3,20) = 0. - 1.*QDDi*cos23

Y(3,21) 1.034677675294261*(QDD2 + QDD3) -
0.471704994386553*(2%QDD2 + 2*QDD3 +
2%QD1%**2%cos2%sin2 +
2%QD1**2%cos3%sin3 - 4*%QD1**2*sin2+sin3*sin23) -
0.258257646724297 1% (- (QD1#*2*cos2*sin2) -
QD1*%*2%cos3*sin3: +
2%(QD1%*2*sin2%sin3*sin23) -
0.5233546696798646%(0.5827*(QDD3 -
QD1**2%cos2%sin2 -

QD1**2%cos3*sin3 + 2*QD1**2%sin2*sin3*sin23)

Y(3,22) = 0. - 1.%(-QD1**2 + 2%QD1**2%cos23**2)

Y(3,23) = 0. - 1.414213562373096*(-(QDD2*cos3) -
QD2#*2%sin3 -

QD1%%2%cos2*sin23)

Y(3,24)

0. + 1.732050807568877*(DD1*sin23

B.5 The Principal Base Parameler Set, P*

The physical values are as found in [13].

$P"*$(1) = 0.5464078160431836*GRAV¥AA(2)*M(2) +
0.5464078160431836%GRAV*AA(2) *M(3) +
0.5464078160431836%GRAV*M(2) *XBAR(2) +
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0-.3229790948354945*AA (2)*M(2) *YBAR(2)

$P~*$(2) = -0.1864720673458945%GRAV¥AA (2)*#M(2) =
0.1864720673458945%GRAVAA (2)*M(8) =
0.1864720673458945%GRAVXM(2) *XBAE2) +
0.946406099039542xAA(2) *M(2) *YBAR(2)
$P~*$(3) = 1.*GRAV*M(3)*ZBAR(3)

$P~*$(4) = SFTOR(2)

$P~*$(5) = SFTOR(1)
$P~*$(6) = BN2(1)
$P~*$(7) = SFTOR(3)

$P~x$(8) = BN2(2)
$P~*$(9) = BN2(3)

$P~*$(10) = 0.5510350569644098*AA(2)*DD(3)*M(3) +
0.5510350569644098+AA(2) *M(3) *YBAR(3) +
0.6266743428547712+AA (2)*M(2) *ZBAR(2)

$P~*$(11) = -O.4431256774282322*AA(2)*DD(E)*M(S) -
0.4431256774282321xAA(2)*M(3) *YBAR(3) +
0.7792812509020994*AA (2)*M(2) *ZBAR(2)

$P~*$(12) = -0.3804528033808052 -
.1383863766233774%KYY2 (1) *M(1) -
.2122473170855674%AA(2) **x2+M(2) -
.02967614257656331*KXX2(2) *M(2) ~
.1087102340468141*%KYY2(2)#M(2) -
.1035370830387533%K222 (2) *M(2) -
.2122473170855674*AA(2) #%24M(3) -
.2750146732518451%AA (3) **2+¢M(3) -
. 1383863766233774*DD (3) *+2xM(3) -
- 1016742198909498+KXX2(3)*M(3) -
.2383025165194176%KYY2(3)*M(3) -
.03671215673242757+KZZ2(3)*M(3) -
.4244946341711351%AA(2) *M(2) *XBAR(2) -

OO0 O O OO OO O O OO
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0.5500293465036903%AA (3)*M(3) *XBAR(3) -

0.2767727532467548+DD (3) *M(3) *YBAR(3)
$P~*$(13) = -1.*GRAV*M(2)*YBAR(2)
$P~x$(14) = 0.03954977001903916 +
.2287973483287534*KYY2 (1) *M(1) +
.157235038938721*AA(2) ¥%x2+M{2) +
.03533004941978912+4KXX2(2)*M(2) +
.1934672989089642+KYY2(2) *M(2) -
.03623225997024321%KZZ2 (2)*M(2) +
.157235038938721¢AA(2) *%2xM(3) -
.2694525088995099%AA (3) #%2+M(3) +
.2287973483287536:+DD (3) *%2+M(3) +
.1838279826418586*%KXX2(3)*M(3) =
.3094218745864047*KYY2(3) *M(3) +
.03996936568689477+KZZ2 (3)*M(3) +
.3144700778774421%AA(2) ¥ (2) *X"AR(2) -
.5389050177990198%AA (3) *M(3) *XBAR(3) +
.4575946966575072%DD (3) *M(3) *YBAR(3)

O O OO O C OO OO OO O OO

$P~*$(15) = -0.2456155982889842 -
.01624226265009617+KYY2 (1) *M(1) +
.0939741283167811%E(2) *x2xM(2) -
.0889235810932947*#KXX2(2) *M(2) +
.07268131844319859*+KYY2(2) *M(2) +
.02129280687358251*%KZZ2 (2) M (2) +
.0939741253167812%AA(2) #*2+M(3) +
.09165564756849%AA (3)*¥2+M(3) -
.01624226265009611+DD (3) **2xM(3) ~
.5650489420980276*KXX2(3)*M(3) -
.4571510318794415%KYY2(3) *M(3) +
.5488066794479313%K222(3) *M(3) +

. 1.879482506335623*AA (2) *M(2) *XBAR(2) +
.18331129513698*AA (3) *M(3) *XBAR(3) -
.03248452530019222+DD (3) *M(3) ¥YBAR(3)

SO OO0 OO OO0 OO0 OO OO OO

$P~*$(16) = -0.4739123690332002 +
0.2363456990274378*KYY2(1)#M(1) -
0.178009252988034%AA(2) **2*M(2) +
0.115279798595574%KXX2(2)*M(2) +
0.1210659004318637*KYY2(2)*M(2) -
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$P~x$(17) =

$p~x$(18) =

DO OO0 O00CO0O0O0O0O O

$P~*$(19) =

$P~x$(20) =

$p-x$(21) =

.2990751534198976*KZZ2 (2)*M(2) =
.178009252988034%AA (2) **2%M(3) +
.1423809061828166#AA (3) *¥2¥M(3) +
.2363456990274378*DD (3) #x2*M(3) +
.14200589877006*KXX2(3)*M(3) +
.04804110592543898*KYY2 (3) *M(3) +
.0943398002573777+KZZ2(3)*M(3) -
.3560185059760682%AA(2) *M(2) *XBAR(2) +
.2847618123656332%AA (3) *M(3) *XBAR(3) +
.4726913980548757+DD (3) *M(3) *YBAR(3)

OO OO0 OO OO OO

-1.%AA(2)*M(3)*ZBAR(3)

-0.5430206388065662 -
.09637131.35584128+KYY2(1)*M(1) +
.1676138420435843%AA (2) *%2%M(2) ~
.4491414325181287*KXX2(2) *M(2) +
.3527701189597157*KYY2(2) *M(2) -
.1851562769161311%KZZ22(2) *M(2) +
.1676138420435845%AA (2) *%2%M(3) +
.005511963003661525*AA(3) **2*¥M(3) -
.0963713135584128+DD (3) **2%M(3) +
.1285618779164425+KXX2(3)*M(3) +
.2304451544785: 72%KYV2(3)*M(3) =
.224933191474855T*KZZ2(3)*M(3) +
.335227684087169*AA (2) *M(2) *XBAR(2) +
.01102392601732305%AA (3)*M(3) *XBAR(3) -
.1527426271168257+DD (3) #M(3) *YBAR(3)

o

.7071067811865475%GRAV+AA(3) *M(3) +
.7071067811865474+GRAV*M(3)*XBAR(3)

o

1.*DD(3) *M(3)*ZBAR(3)
-0.5233546696798645 +
.0114877786792432*%KYY2(1)*M(1) +
.1093526052990443*AA (2) *2*¥M(2) +
.4276053002863393%KXX2 (2)*M(2) -
.4161175216070962*%KYY2(2)*M(2) +
.5254701269061404+KZZ2 (2)*M(2) +

. 1093526052990442%AA (2) *+2xM(3) +
.001895616432506327*AA (3) **2xM(3) +

O O OO O O O
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.01148777867924333%DD(3)**2+M(3) +
.0913817666053604+KXX2(3) *M(3) +
.0817896043586238*KYY2(3) *M(3) -
.07989398792611714*%KZZ2(3)*M(3) +
.2187052105980888+AA (2) *M(2) *XBAR(2) +
.003791232865012653%AA(3) *M(3)*XBAR(3) +
.02297555735848666+DD(3)*M(3) *YBAR(3)

OO0 OO OO

b

$P~*$(22) = 1.*AA(3)*M(3)*ZBAR(3)

<

$P~*$(23) = 0.707106781186547*AA(2)*AA(3)*M(3) +

0.707106781186547*AA(2)*M(3)*XBAR(3)

(=}

$P~*$(24) = 0.5773502691896258+AA(3)+DD(3)*M(3) +
.5773502691896258+DD (3) *M(3)*XBAR(3) +

0.5773502691896258*AA (3) *M(3) *YBAR(3)

o

B.6 Physical Values Used

"

GRAV

M(1)

M(2)

9.80665
= 12.96
= 22.37

M(3) = 6.97

AA(2) = 0.4318
AA(3) = -0.0191
DD(3) = 0.1505
XBAR(2) = -0.3289
XBAR(3) = 0.01466
YBAR(2) = 0.0050
YBAR(3) = 0.00845
ZBAR(2) = 0.2038
ZBAR(3) = 0.1101

1}

i}

KXX1 = 0.1816
KYY1l = 0.0152
K7Z1 = 0.1811
KXX2 = 0.0596
KYY2 = 0.1930
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KZZ2
KXX3
KYY3
KZZ3 =
BN2(1)
BN2(2)
BN2(3)

N © © O ©

.1514
.0783
.0786
.0021
4.5
3.5
3.5

SFTOR(1)= 5.95
SFTOR(2)= 6.82
SFTOR(3)= 3.91

B-22




